Suppr超能文献

加利福尼亚州铁山的酸性矿山排水生物地球化学

Acid mine drainage biogeochemistry at Iron Mountain, California.

作者信息

Druschel Gregory K, Baker Brett J, Gihring Thomas M, Banfield Jillian F

机构信息

Department of Geology and Geophysics, The University of Wisconsin-Madison, Madison, Wisconsin 53706.

Department of Geology, University of Vermont, Burlington, VT 05405.

出版信息

Geochem Trans. 2004 Jun 30;5(2):13. doi: 10.1186/1467-4866-5-13. eCollection 2004.

Abstract

The Richmond Mine at Iron Mountain, Shasta County, California, USA provides an excellent opportunity to study the chemical and biological controls on acid mine drainage (AMD) generation , and to identify key factors controlling solution chemistry. Here we integrate four years of field-based geochemical data with 16S rRNA gene clone libraries and rRNA probe-based studies of microbial population structure, cultivation-based metabolic experiments, arsenopyrite surface colonization experiments, and results of intermediate sulfur species kinetics experiments to describe the Richmond Mine AMD system. Extremely acidic effluent (pH between 0.5 and 0.9) resulting from oxidation of approximately 1 × 10 to 2 × 10 moles pyrite/day contains up to 24 g/1 Fe, several g/1 Zn and hundreds of mg/l Cu. Geochemical conditions change markedly over time, and are reflected in changes in microbial populations. Molecular analyses of 232 small subunit ribosomal RNA (16S rRNA) gene sequences from six sites during a sampling time when lower temperature (<32°C), higher pH (>0.8) conditions predominated show the dominance of Fe-oxidizing prokaryotes such as and in the primary drainage communities. group III accounts for the majority of sequences, which we attribute to anomalous physical and geochemical regimes at that time. A couple of sites peripheral to the main drainage, "Red Pool" and a pyrite "Slump," were even higher in pH (>1) and the community compositions reflected this change in geochemical conditions. Several novel lineages were identified within the archaeal order associated with the pyrite slump, and the Red Pool (pH 1.4) contained the only population of . Relatively small populations of spp. and may metabolize elemental sulfur as an intermediate species in the oxidation of pyritic sulfide to sulfate. Experiments show that elemental sulfur which forms on pyrite surfaces is resistant to most oxidants; its solublization by unattached cells may indicate involvement of a microbially derived electron shuttle. The detachment of thiosulfate () as a leaving group in pyrite oxidation should result in the formation and persistence of tetrathionate in low pH ferric iron-rich AMD solutions. However, tetrathionate is not observed. Although a -like species may form as a surface-bound intermediate, data suggest that Fe oxidizes the majority of sulfur to sulfate on the surface of pyrite. This may explain why microorganisms that can utilize intermediate sulfur species are scarce compared to Fe-oxidizing taxa at the Richmond Mine site.

摘要

美国加利福尼亚州沙斯塔县铁山的里士满矿,为研究酸性矿山排水(AMD)产生的化学和生物控制因素以及确定控制溶液化学性质的关键因素提供了绝佳机会。在此,我们将四年的实地地球化学数据与16S rRNA基因克隆文库、基于rRNA探针的微生物种群结构研究、基于培养的代谢实验、毒砂表面定殖实验以及中间硫物种动力学实验结果相结合,以描述里士满矿AMD系统。每天约1×10至2×10摩尔黄铁矿氧化产生的极端酸性废水(pH值在0.5至0.9之间)含有高达24 g/L的铁、几g/L的锌和数百mg/L的铜。地球化学条件随时间显著变化,并反映在微生物种群的变化中。在低温(<32°C)、高pH值(>0.8)条件占主导的采样期间,对来自六个地点的232个小亚基核糖体RNA(16S rRNA)基因序列进行分子分析,结果表明,在主要排水群落中,铁氧化原核生物如 和 占主导地位。III组占 序列的大部分,我们将其归因于当时异常的物理和地球化学状态。主排水周边的几个地点,“红池”和一个黄铁矿“塌落区”,pH值甚至更高(>1),群落组成反映了地球化学条件的这种变化。在与黄铁矿塌落区相关的古菌 目内鉴定出了几个新谱系,红池(pH值1.4)含有唯一的 种群。相对少量的 和 物种可能将元素硫作为黄铁矿硫化物氧化为硫酸盐过程中的中间物种进行代谢。实验表明,在黄铁矿表面形成的元素硫对大多数氧化剂具有抗性;其被未附着细胞溶解可能表明存在微生物衍生的电子穿梭体。在黄铁矿氧化过程中,硫代硫酸盐( )作为离去基团脱离,应导致在低pH值、富含高铁的AMD溶液中形成并持续存在连四硫酸盐。然而,未观察到连四硫酸盐。尽管可能形成一种类似 的表面结合中间体,但数据表明,铁在黄铁矿表面将大部分硫氧化为硫酸盐。这或许可以解释为什么与里士满矿场的铁氧化类群相比,能够利用中间硫物种的微生物较为稀少。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b635/1475782/01ba27fda1d5/1467-4866-5-13-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验