Osinsky A I, Brilliantov N V
Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
Department of Mathematics, University of Leicester, Leicester LE1 7RH, United Kingdom.
Phys Rev E. 2022 Mar;105(3-1):034119. doi: 10.1103/PhysRevE.105.034119.
Temperature-dependent Smoluchowski equations describe the ballistic agglomeration. In contrast to the standard Smoluchowski equations for the evolution of cluster densities, with constant rate coefficients, the temperature-dependent equations describe both-the evolution of the densities as well as cluster temperatures, which determine the agglomeration rates. To solve these equations, we develop a Monte Carlo technique based on the low-rank approximation for the aggregation kernel. Using this highly effective approach, we perform a comprehensive study of the kinetic phase diagram of the system and reveal a few surprising regimes, including permanent temperature growth and "density separation" regime, with a large gap in the size distribution for middle-size clusters. We perform scaling analysis and classify the aggregation kernels for the temperature-dependent equations. Furthermore, we conjecture the lack of gelation in such systems. The results of the scaling theory agree well with the simulation data.
温度依赖的斯莫卢霍夫斯基方程描述了弹道团聚。与用于团簇密度演化的标准斯莫卢霍夫斯基方程不同,后者具有恒定的速率系数,而温度依赖方程既描述了密度的演化,也描述了决定团聚速率的团簇温度。为了解这些方程,我们基于聚集核的低秩近似开发了一种蒙特卡罗技术。使用这种高效方法,我们对系统的动力学相图进行了全面研究,并揭示了一些令人惊讶的状态,包括温度持续增长和“密度分离”状态,其中中等尺寸团簇的尺寸分布存在很大差距。我们进行了标度分析,并对温度依赖方程的聚集核进行了分类。此外,我们推测此类系统中不存在凝胶化现象。标度理论的结果与模拟数据吻合良好。