Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
Colloids Surf B Biointerfaces. 2022 Jul;215:112495. doi: 10.1016/j.colsurfb.2022.112495. Epub 2022 Apr 13.
A significant bottleneck in the clinical translation of stem cells remains eliciting the desired stem cell behavior once transplanted in the body. In their natural environment, stem cell fate is regulated by their interaction with extracellular matrix (ECM), mainly through integrin-mediated cell adhesion. 2D biointerfaces that selectively present ECM-derived ligands can be used as valuable tools to study and improve our understanding on how stem cells interact with their environment. Here we developed a new type of biointerface based on mesoporous silica nanoparticles (MSN) which are interesting nanomaterials for biointerface engineering because they allow close control over surface physiochemical properties. To create the platform, DNA functionalized MSN (MSN-ssDNA) with varying PEG linker length were developed. Cell adhesion tripeptide RGD was conjugated to a complementary DNA strand, which could specifically bind to MSN-ssDNA to create MSN-dsDNA-RGD films. We showed that MSN-dsDNA-RGD films could promote hMSCs adhesion and spreading, whereas MSN-dsDNA films without RGD resulted in poor cell spreading with round morphology, and low cell adhesion. In addition, we showed that cell adhesion to the films is PEG length-dependent. The design of the platform allows easy incorporation of other and multiple ECM ligands, as well as soluble cues, making MSN-ssDNA based biointerfaces a novel tool to study ligand-stem cell interactions.
干细胞临床转化的一个重要瓶颈是在移植到体内后如何诱导所需的干细胞行为。在其自然环境中,干细胞命运受其与细胞外基质(ECM)的相互作用调控,主要通过整合素介导的细胞黏附。能够选择性呈现 ECM 衍生配体的 2D 生物界面可作为研究和增进我们对干细胞如何与其环境相互作用的理解的有价值的工具。在这里,我们开发了一种基于介孔硅纳米粒子(MSN)的新型生物界面,MSN 是生物界面工程的有趣纳米材料,因为它们可以对表面物理化学性质进行精细控制。为了创建该平台,开发了具有不同 PEG 接头长度的 DNA 功能化 MSN(MSN-ssDNA)。细胞黏附三肽 RGD 被连接到互补的 DNA 链上,该 DNA 链可以特异性地与 MSN-ssDNA 结合,从而形成 MSN-dsDNA-RGD 薄膜。我们表明,MSN-dsDNA-RGD 薄膜可以促进 hMSCs 的黏附和铺展,而不含 RGD 的 MSN-dsDNA 薄膜导致细胞铺展不良,呈现圆形形态,细胞黏附性低。此外,我们表明细胞黏附到薄膜上与 PEG 长度有关。该平台的设计允许容易地掺入其他和多种 ECM 配体以及可溶性信号,使得基于 MSN-ssDNA 的生物界面成为研究配体-干细胞相互作用的新型工具。