Ouyang Qiangqiang, Yang Wenjian, Wu Yue, Xu Zhongyuan, Hu Yongjun, Hu Ning, Zhang Diming
Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100, China; First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, China.
Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100, China.
Biosens Bioelectron. 2022 Aug 1;209:114261. doi: 10.1016/j.bios.2022.114261. Epub 2022 Apr 9.
High-throughput cardiotoxicity assessment is important for large-scale preclinical screening in novel drug development. To improve the efficiency of drug development and avoid drug-induced cardiotoxicity, there is a huge demand to explore the automatic and intelligent drug assessment platforms for preclinical cardiotoxicity investigations. In this work, we proposed an automatic and intelligent strategy that combined automatic feature extraction and multi-labeled neural network (MLNN) to process cardiomyocytes mechanical beating signals detected by an interdigital electrode biosensor for the assessment of drug-induced cardiotoxicity. Taking advantages of artificial neural network, our work not only classified different drugs inducing different cardiotoxicities but also predicted drug concentrations representing severity of cardiotoxicity. This has not been achieved by conventional strategies like principal component analysis and visualized heatmap. MLNN analysis showed high accuracy (up to 96%) and large AUC (more than 98%) for classification of different drug-induced cardiotoxicities. There was a high correlation (over 0.90) between concentrations reported by MLNN and experimentally treated concentrations of various drugs, demonstrating great capacity of our intelligent strategy to predict the severity of drug-induced cardiotoxicity. This new intelligent bio-signal processing algorithm is a promising method for identification and classification of drug-induced cardiotoxicity in cardiological and pharmaceutical applications.
高通量心脏毒性评估对于新药开发中的大规模临床前筛选至关重要。为了提高药物开发效率并避免药物诱导的心脏毒性,探索用于临床前心脏毒性研究的自动智能药物评估平台的需求巨大。在这项工作中,我们提出了一种自动智能策略,该策略结合自动特征提取和多标签神经网络(MLNN)来处理由叉指电极生物传感器检测到的心肌细胞机械搏动信号,以评估药物诱导的心脏毒性。利用人工神经网络,我们的工作不仅对诱导不同心脏毒性的不同药物进行了分类,还预测了代表心脏毒性严重程度的药物浓度。这是传统策略如主成分分析和可视化热图所无法实现的。MLNN分析对不同药物诱导的心脏毒性分类显示出高准确率(高达96%)和大的曲线下面积(超过98%)。MLNN报告的浓度与各种药物的实验处理浓度之间存在高度相关性(超过0.90),表明我们的智能策略在预测药物诱导的心脏毒性严重程度方面具有强大能力。这种新的智能生物信号处理算法是心脏病学和制药应用中识别和分类药物诱导的心脏毒性的一种有前途的方法。