Jobin Olivier, Mottillo Cristina, Titi Hatem M, Marrett Joseph M, Arhangelskis Mihails, Rogers Robin D, Elzein Bachar, Friščić Tomislav, Robert Étienne
Department of Mechanical Engineering, Polytechnique Montréal 2900 Boulevard Edouard-Montpetit Montréal QC H3T 1J4 Canada
ACSYNAM Inc. Montréal QC H1P 1W1 Canada.
Chem Sci. 2022 Feb 28;13(12):3424-3436. doi: 10.1039/d1sc05975k. eCollection 2022 Mar 24.
Hybrid rocket propulsion can contribute to reduce launch costs by simplifying engine design and operation. Hypergolic propellants, igniting spontaneously and immediately upon contact between fuel and oxidizer, further simplify system integration by removing the need for an ignition system. Such hybrid engines could also replace currently popular hypergolic propulsion approaches based on extremely toxic and carcinogenic hydrazines. Here we present the first demonstration for the use of hypergolic metal-organic frameworks (HMOFs) as additives to trigger hypergolic ignition in conventional paraffin-based hybrid engine fuels. HMOFS are a recently introduced class of stable and safe hypergolic materials, used here as a platform to bring readily tunable ignition and combustion properties to hydrocarbon fuels. We present an experimental investigation of the ignition delay (ID, the time from first contact with an oxidizer to ignition) of blends of HMOFs with paraffin, using White Fuming Nitric Acid (WFNA) as the oxidizer. The majority of measured IDs are under 10 ms, significantly below the upper limit of 50 ms required for functional hypergolic propellant, and within the ultrafast ignition range. A theoretical analysis of the performance of HMOFs-containing fuels in a hybrid launcher engine scenario also reveals the effect of the HMOF mass fraction on the specific impulse ( ) and density impulse ( ). The use of HMOFs to produce paraffin-based hypergolic fuels results in a slight decrease of the and compared to that of pure paraffin, similar to the effect observed with Ammonia Borane (AB), a popular hypergolic additive. HMOFs however have a much higher thermal stability, allowing for convenient mixing with hot liquid paraffin, making the manufacturing processes simpler and safer compared to other hypergolic additives such as AB.
混合火箭推进可以通过简化发动机设计和运行来降低发射成本。自燃推进剂在燃料和氧化剂接触时会立即自燃,无需点火系统,进一步简化了系统集成。这种混合发动机还可以取代目前流行的基于剧毒和致癌肼的自燃推进方法。在此,我们首次展示了使用自燃金属有机框架(HMOF)作为添加剂,在传统石蜡基混合发动机燃料中引发自燃点火。HMOF是最近引入的一类稳定且安全的自燃材料,在此用作平台,为烃类燃料带来易于调节的点火和燃烧特性。我们使用发烟硝酸(WFNA)作为氧化剂,对HMOF与石蜡混合物的点火延迟(ID,从首次与氧化剂接触到点火的时间)进行了实验研究。大多数测量的点火延迟在10毫秒以下,明显低于功能性自燃推进剂所需的50毫秒上限,且处于超快点火范围内。对含HMOF燃料在混合发射器发动机场景中的性能进行的理论分析还揭示了HMOF质量分数对比冲( )和密度冲量( )的影响。与纯石蜡相比,使用HMOF生产石蜡基自燃燃料会导致 和 略有下降,这与使用流行的自燃添加剂氨硼烷(AB)时观察到的效果类似。然而,HMOF具有更高的热稳定性,允许与热液态石蜡方便地混合,与其他自燃添加剂(如AB)相比,使制造过程更简单、更安全。