Suppr超能文献

利用建模和情景分析为马拉维循证卫生人力战略规划提供支持。

Using modeling and scenario analysis to support evidence-based health workforce strategic planning in Malawi.

机构信息

Clinton Health Access Initiative, Inc. (CHAI) Malawi, Lilongwe, Malawi.

Analytics and Implementation Research Team, Clinton Health Access Initiative, Inc. (CHAI), Boston, MA, USA.

出版信息

Hum Resour Health. 2022 Apr 18;20(1):34. doi: 10.1186/s12960-022-00730-3.

Abstract

BACKGROUND

A well-trained and equitably distributed workforce is critical to a functioning health system. As workforce interventions are costly and time-intensive, investing appropriately in strengthening the health workforce requires an evidence-based approach to target efforts to increase the number of health workers, deploy health workers where they are most needed, and optimize the use of existing health workers. This paper describes the Malawi Ministry of Health (MoH) and collaborators' data-driven approach to designing strategies in the Human Resources for Health Strategic Plan (HRH SP) 2018-2022.

METHODS

Three modelling exercises were completed using available data in Malawi. Staff data from districts, central hospitals, and headquarters, and enrollment data from all health training institutions were collected between October 2017 and February 2018. A vacancy analysis was conducted to compare current staffing levels against established posts (the targeted number of positions to be filled, by cadre and work location). A training pipeline model was developed to project the future available workforce, and a demand-based Workforce Optimization Model was used to estimate optimal staffing to meet current levels of service utilization.

RESULTS

As of 2017, 55% of established posts were filled, with an average of 1.49 health professional staff per 1000 population, and with substantial variation in the number of staff per population by district. With current levels of health worker training, Malawi is projected to meet its establishment targets in 2030 but will not meet the WHO standard of 4.45 health workers per 1000 population by 2040. A combined intervention reducing attrition, increasing absorption, and doubling training enrollments would allow the establishment to be met by 2023 and the WHO target to be met by 2036. The Workforce Optimization Model shows a gap of 7374 health workers to optimally deliver services at current utilization rates, with the largest gaps among nursing and midwifery officers and pharmacists.

CONCLUSIONS

Given the time and significant financial investment required to train and deploy health workers, evidence needs to be carefully considered in designing a national HRH SP. The results of these analyses directly informed Malawi's HRH SP 2018-2022 and have subsequently been used in numerous planning processes and investment cases in Malawi. This paper provides a practical methodology for evidence-based HRH strategic planning and highlights the importance of strengthening HRH data systems for improved workforce decision-making.

摘要

背景

一个训练有素且公平分布的劳动力队伍对一个运作良好的卫生系统至关重要。由于劳动力干预措施成本高昂且耗时,因此适当投资于加强卫生人力需要采取循证方法,以针对增加卫生工作者人数、在最需要的地方部署卫生工作者以及优化利用现有卫生工作者的目标做出努力。本文描述了马拉维卫生部(MoH)及其合作者在 2018-2022 年《卫生人力战略计划》(HRH SP)中设计策略的数据驱动方法。

方法

使用马拉维现有的数据完成了三项建模练习。在 2017 年 10 月至 2018 年 2 月期间,收集了来自地区、中央医院和总部的员工数据以及所有卫生培训机构的入学数据。进行了一次职位空缺分析,以比较当前的人员配置水平与既定职位(按军种和工作地点确定的要填补的职位数量)。开发了一个培训渠道模型来预测未来的可用劳动力,并使用基于需求的劳动力优化模型来估计满足当前服务利用率的最佳人员配备。

结果

截至 2017 年,55%的既定职位得到填补,每 1000 人口平均有 1.49 名卫生专业人员,各地区每 1000 人口的员工人数存在很大差异。按照目前的卫生工作者培训水平,马拉维预计将在 2030 年实现其建立目标,但到 2040 年将无法达到世卫组织每 1000 人 4.45 名卫生工作者的标准。减少人员流失、增加吸收和将培训入学人数增加一倍的综合干预措施将使 2023 年达到既定目标,并使 2036 年达到世卫组织的目标。劳动力优化模型显示,以目前的利用率提供服务需要 7374 名卫生工作者,差距最大的是护理和助产人员以及药剂师。

结论

鉴于培训和部署卫生工作者所需的时间和大量资金投入,在设计国家卫生人力战略计划时需要仔细考虑证据。这些分析的结果直接为马拉维的 2018-2022 年人力资源战略计划提供了信息,并随后在马拉维的许多规划过程和投资案例中得到了应用。本文提供了循证人力资源战略规划的实用方法,并强调了加强人力资源数据系统以改善劳动力决策的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87ef/9014573/a9160807ef28/12960_2022_730_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验