Suppr超能文献

基于深度学习的诊断平台使用简单尿流率测定评估男性下尿路疾病的可行性。

Feasibility of a deep learning-based diagnostic platform to evaluate lower urinary tract disorders in men using simple uroflowmetry.

机构信息

Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.

Medical AI Research Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.

出版信息

Investig Clin Urol. 2022 May;63(3):301-308. doi: 10.4111/icu.20210434. Epub 2022 Mar 25.

Abstract

PURPOSE

To diagnose lower urinary tract symptoms (LUTS) in a noninvasive manner, we created a prediction model for bladder outlet obstruction (BOO) and detrusor underactivity (DUA) using simple uroflowmetry. In this study, we used deep learning to analyze simple uroflowmetry.

MATERIALS AND METHODS

We performed a retrospective review of 4,835 male patients aged ≥40 years who underwent a urodynamic study at a single center. We excluded patients with a disease or a history of surgery that could affect LUTS. A total of 1,792 patients were included in the study. We extracted a simple uroflowmetry graph automatically using the ABBYY Flexicapture image capture program (ABBYY, Moscow, Russia). We applied a convolutional neural network (CNN), a deep learning method to predict DUA and BOO. A 5-fold cross-validation average value of the area under the receiver operating characteristic (AUROC) curve was chosen as an evaluation metric. When it comes to binary classification, this metric provides a richer measure of classification performance. Additionally, we provided the corresponding average precision-recall (PR) curves.

RESULTS

Among the 1,792 patients, 482 (26.90%) had BOO, and 893 (49.83%) had DUA. The average AUROC scores of DUA and BOO, which were measured using 5-fold cross-validation, were 73.30% (mean average precision [mAP]=0.70) and 72.23% (mAP=0.45), respectively.

CONCLUSIONS

Our study suggests that it is possible to differentiate DUA from non-DUA and BOO from non-BOO using a simple uroflowmetry graph with a fine-tuned VGG16, which is a well-known CNN model.

摘要

目的

为了无创诊断下尿路症状(LUTS),我们使用简单尿流率法创建了一个用于膀胱出口梗阻(BOO)和逼尿肌活动低下(DUA)的预测模型。在这项研究中,我们使用深度学习来分析简单尿流率。

材料与方法

我们对单中心接受尿动力学检查的 4835 名年龄≥40 岁的男性患者进行了回顾性研究。我们排除了患有可能影响 LUTS 的疾病或手术史的患者。共有 1792 名患者纳入本研究。我们使用 ABBYY Flexicapture 图像采集程序(ABBYY,俄罗斯莫斯科)自动提取简单尿流率图。我们应用卷积神经网络(CNN),一种深度学习方法,来预测 DUA 和 BOO。选择 5 倍交叉验证的接收器工作特征(ROC)曲线下面积(AUROC)平均值作为评价指标。在涉及二分类的情况下,该指标提供了更丰富的分类性能度量。此外,我们还提供了相应的平均精度-召回(PR)曲线。

结果

在 1792 名患者中,482 名(26.90%)患有 BOO,893 名(49.83%)患有 DUA。使用 5 倍交叉验证测量的 DUA 和 BOO 的平均 AUROC 评分分别为 73.30%(平均精度[ mAP] = 0.70)和 72.23%(mAP = 0.45)。

结论

我们的研究表明,使用经过微调的 VGG16 可以从简单尿流率图中区分 DUA 和非 DUA,以及 BOO 和非 BOO,VGG16 是一种著名的 CNN 模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ecc/9091823/7ca7696ff7e5/icu-63-301-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验