Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States.
J Am Chem Soc. 2022 May 4;144(17):7750-7757. doi: 10.1021/jacs.2c00877. Epub 2022 Apr 20.
The hexadehydro-Diels-Alder (HDDA) reaction converts a 1,3-diyne bearing a tethered alkyne (the diynophile) into bicyclic benzyne intermediates upon thermal activation. With only a few exceptions, this unimolecular cycloisomerization requires, depending on the nature of the atoms connecting the diyne and diynophile, reaction temperatures of 80-130 °C to achieve a convenient half-life (, 1-10 h) for the reaction. In this report, we divulge a new variant of the HDDA process in which the tether contains a central, quaternized nitrogen atom. This construct significantly lowers the activation barrier for the HDDA cycloisomerization to the benzyne. Moreover, many of the ammonium ion-based, alkyne-containing substrates can be spontaneously assembled, cyclized to benzyne, and trapped in a single-vessel, ambient-temperature operation. DFT calculations provide insights into the origin of the enhanced rate of benzyne formation.
十六氢-Diels-Alder (HDDA) 反应在热激活下将带有连接炔烃(二炔亲核试剂)的 1,3-二炔转化为双环苯炔中间体。除了少数例外,这种单分子环异构化反应需要根据连接二炔和二炔亲核试剂的原子的性质,在 80-130°C 的反应温度下实现方便的半衰期(, 1-10 h)。在本报告中,我们揭示了 HDDA 反应的一种新变体,其中连接体包含一个中央季铵化氮原子。这种结构显著降低了 HDDA 环异构化生成苯炔的活化能垒。此外,许多基于铵离子的含炔烃的底物可以自发组装、环化生成苯炔,并在单个容器中、在环境温度下进行捕获。DFT 计算提供了对增强苯炔形成速率的起源的深入了解。