IEEE Trans Cybern. 2023 May;53(5):3220-3230. doi: 10.1109/TCYB.2022.3163191. Epub 2023 Apr 21.
This article tackles the problem of filtering design for continuous-time Roesser-type 2-D nonlinear systems via Takagi-Sugeno (T-S) fuzzy affine models. The aim is to design an admissible piecewise affine (PWA) filter such that the filtering error system is asymptotically stable with a prescribed disturbance attenuation level. First, 2-D Roesser nonlinear systems are approximated by a kind of 2-D fuzzy affine models with norm-bounded uncertainties. Then, the premise variable space of the 2-D fuzzy affine systems is partitioned into two classes of subspaces, that is: 1) crisp regions and 2) fuzzy regions. For each region, boundary continuity matrices and characterizing matrices are constructed by utilizing the space partition information and 2-D structure. After that, novel piecewise Lyapunov functions are constructed, based on which together with S -procedure, the asymptotic stability with H performance is guaranteed for the filtering error system. By the projection lemma and some elegant convexification techniques, the PWA H filtering design conditions are obtained. Finally, the less conservativeness and effectiveness of the proposed approach over a common Lyapunov function-based one are illustrated by simulation studies.
本文针对连续时间 Roesser 型二维非线性系统的滤波设计问题,通过 Takagi-Sugeno(T-S)模糊仿射模型进行研究。旨在设计一个可接受的分段仿射(PWA)滤波器,使得滤波误差系统在给定的干扰衰减水平下渐近稳定。首先,通过一类具有范数有界不确定性的二维模糊仿射模型来逼近二维 Roesser 非线性系统。然后,将二维模糊仿射系统的前提变量空间划分为两类子空间,即:1)清晰区域和 2)模糊区域。对于每个区域,利用空间分区信息和二维结构构建边界连续矩阵和特征矩阵。之后,基于这些矩阵,构造了新的分段 Lyapunov 函数,并利用 S 过程,保证了滤波误差系统的渐近稳定性和 H 性能。通过投影引理和一些巧妙的凸化技术,得到了 PWA H 滤波设计条件。最后,通过仿真研究,说明了所提出的方法相对于基于常见 Lyapunov 函数的方法具有更小的保守性和有效性。