Suppr超能文献

结直肠癌各阶段的模块化和机制变化。

Modular and mechanistic changes across stages of colorectal cancer.

机构信息

Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.

Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, USA.

出版信息

BMC Cancer. 2022 Apr 21;22(1):436. doi: 10.1186/s12885-022-09479-3.

Abstract

BACKGROUND

While mechanisms contributing to the progression and metastasis of colorectal cancer (CRC) are well studied, cancer stage-specific mechanisms have been less comprehensively explored. This is the focus of this manuscript.

METHODS

Using previously published data for CRC (Gene Expression Omnibus ID GSE21510), we identified differentially expressed genes (DEGs) across four stages of the disease. We then generated unweighted and weighted correlation networks for each of the stages. Communities within these networks were detected using the Louvain algorithm and topologically and functionally compared across stages using the normalized mutual information (NMI) metric and pathway enrichment analysis, respectively. We also used Short Time-series Expression Miner (STEM) algorithm to detect potential biomarkers having a role in CRC.

RESULTS

Sixteen Thousand Sixty Two DEGs were identified between various stages (p-value ≤ 0.05). Comparing communities of different stages revealed that neighboring stages were more similar to each other than non-neighboring stages, at both topological and functional levels. A functional analysis of 24 cancer-related pathways indicated that several signaling pathways were enriched across all stages. However, the stage-unique networks were distinctly enriched only for a subset of these 24 pathways (e.g., MAPK signaling pathway in stages I-III and Notch signaling pathway in stages III and IV). We identified potential biomarkers, including HOXB8 and WNT2 with increasing, and MTUS1 and SFRP2 with decreasing trends from stages I to IV. Extracting subnetworks of 10 cancer-relevant genes and their interacting first neighbors (162 genes in total) revealed that the connectivity patterns for these genes were different across stages. For example, BRAF and CDK4, members of the Ser/Thr kinase, up-regulated in cancer, displayed changing connectivity patterns from stages I to IV.

CONCLUSIONS

Here, we report molecular and modular networks for various stages of CRC, providing a pseudo-temporal view of the mechanistic changes associated with the disease. Our analysis highlighted similarities at both functional and topological levels, across stages. We further identified stage-specific mechanisms and biomarkers potentially contributing to the progression of CRC.

摘要

背景

虽然结直肠癌(CRC)进展和转移的机制已经得到了很好的研究,但癌症特定阶段的机制还没有得到全面的探索。这是本文的重点。

方法

我们使用先前发表的 CRC 数据(基因表达综合数据库 ID GSE21510),鉴定了疾病四个阶段的差异表达基因(DEGs)。然后,我们为每个阶段生成了无权重和权重相关网络。使用 Louvain 算法检测这些网络中的社区,并分别使用归一化互信息(NMI)度量和途径富集分析比较不同阶段的拓扑和功能。我们还使用短时间序列表达挖掘器(STEM)算法来检测在 CRC 中具有作用的潜在生物标志物。

结果

在不同阶段之间鉴定出 1662 个 DEGs(p 值≤0.05)。比较不同阶段的社区发现,相邻阶段彼此之间比非相邻阶段更相似,在拓扑和功能水平上都是如此。对 24 条癌症相关途径的功能分析表明,多个信号途径在所有阶段都得到了富集。然而,仅在特定的 24 条途径中,阶段独特的网络明显富集(例如,I-III 期的 MAPK 信号途径和 III-IV 期的 Notch 信号途径)。我们鉴定出了潜在的生物标志物,包括 HOXB8 和 WNT2 呈递增趋势,而 MTUS1 和 SFRP2 则呈递减趋势,从 I 期到 IV 期。提取 10 个癌症相关基因及其相互作用的第一个邻居的子网(总共 162 个基因)显示,这些基因在不同阶段的连接模式不同。例如,丝氨酸/苏氨酸激酶中的 BRAF 和 CDK4 成员,在癌症中上调,其连接模式从 I 期到 IV 期发生变化。

结论

在这里,我们报告了结直肠癌各阶段的分子和模块化网络,提供了与疾病相关的机制变化的伪时间视图。我们的分析强调了功能和拓扑水平上的相似性,跨越了各个阶段。我们进一步确定了潜在有助于 CRC 进展的阶段特异性机制和生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d13/9022252/3260f296fcd6/12885_2022_9479_Fig1_HTML.jpg

相似文献

1
Modular and mechanistic changes across stages of colorectal cancer.
BMC Cancer. 2022 Apr 21;22(1):436. doi: 10.1186/s12885-022-09479-3.
3
Identification of genes involved in the four stages of colorectal cancer: Gene expression profiling.
Mol Cell Probes. 2018 Feb;37:39-47. doi: 10.1016/j.mcp.2017.11.004. Epub 2017 Nov 24.
4
6
The identification of a common different gene expression signature in patients with colorectal cancer.
Math Biosci Eng. 2019 Apr 10;16(4):2942-2958. doi: 10.3934/mbe.2019145.
8
A network-based predictive gene expression signature for recurrence risks in stage II colorectal cancer.
Cancer Med. 2020 Jan;9(1):179-193. doi: 10.1002/cam4.2642. Epub 2019 Nov 14.
10
Identification of a five-gene signature with prognostic value in colorectal cancer.
J Cell Physiol. 2019 Apr;234(4):3829-3836. doi: 10.1002/jcp.27154. Epub 2018 Aug 21.

本文引用的文献

1
Tumor Tissue-Specific Biomarkers of Colorectal Cancer by Anatomic Location and Stage.
Metabolites. 2020 Jun 19;10(6):257. doi: 10.3390/metabo10060257.
3
Dysregulated and Gene Expression in Colorectal Cancer Patients.
Rep Biochem Mol Biol. 2019 Oct;8(3):244-252.
4
Evolving role of regorafenib for the treatment of advanced cancers.
Cancer Treat Rev. 2020 Jun;86:101993. doi: 10.1016/j.ctrv.2020.101993. Epub 2020 Feb 20.
6
Collagen Kinase Receptors as Potential Therapeutic Targets in Metastatic Colon Cancer.
Front Oncol. 2020 Feb 12;10:125. doi: 10.3389/fonc.2020.00125. eCollection 2020.
8
Biomarkers for detecting colorectal cancer non-invasively: DNA, RNA or proteins?
World J Gastrointest Oncol. 2020 Feb 15;12(2):124-148. doi: 10.4251/wjgo.v12.i2.124.
10
DNA methylation of SFRP1, SFRP2, and WIF1 and prognosis of postoperative colorectal cancer patients.
BMC Cancer. 2019 Dec 12;19(1):1212. doi: 10.1186/s12885-019-6436-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验