Suppr超能文献

基于智能手机的低成本先进驾驶辅助系统的车载无线多媒体传感器网络。

An Intra-Vehicular Wireless Multimedia Sensor Network for Smartphone-Based Low-Cost Advanced Driver-Assistance Systems.

机构信息

Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Pretoria 0002, South Africa.

出版信息

Sensors (Basel). 2022 Apr 15;22(8):3026. doi: 10.3390/s22083026.

Abstract

Advanced driver-assistance system(s) (ADAS) are more prevalent in high-end vehicles than in low-end vehicles. Wired solutions of vision sensors in ADAS already exist, but are costly and do not cater for low-end vehicles. General ADAS use wired harnessing for communication; this approach eliminates the need for cable harnessing and, therefore, the practicality of a novel wireless ADAS solution was tested. A low-cost alternative is proposed that extends a smartphone's sensor perception, using a camera-based wireless sensor network. This paper presents the design of a low-cost ADAS alternative that uses an intra-vehicle wireless sensor network structured by a Wi-Fi Direct topology, using a smartphone as the processing platform. The proposed system makes ADAS features accessible to cheaper vehicles and investigates the possibility of using a wireless network to communicate ADAS information in a intra-vehicle environment. Other ADAS smartphone approaches make use of a smartphone's onboard sensors; however, this paper shows the application of essential ADAS features developed on the smartphone's ADAS application, carrying out both lane detection and collision detection on a vehicle by using wireless sensor data. A smartphone's processing power was harnessed and used as a generic object detector through a convolution neural network, using the sensory network's video streams. The network's performance was analysed to ensure that the network could carry out detection in real-time. A low-cost CMOS camera sensor network with a smartphone found an application, using Wi-Fi Direct, to create an intra-vehicle wireless network as a low-cost advanced driver-assistance system.

摘要

高级驾驶辅助系统(ADAS)在高端车辆中比在低端车辆中更为常见。ADAS 中的视觉传感器有线解决方案已经存在,但成本高昂,不适合低端车辆。一般的 ADAS 使用有线线束进行通信;这种方法消除了对电缆线束的需求,因此测试了一种新颖的无线 ADAS 解决方案的实用性。提出了一种低成本的替代方案,该方案使用基于摄像头的无线传感器网络扩展智能手机的传感器感知能力。本文提出了一种使用车内无线传感器网络构建的低成本 ADAS 替代方案,该网络采用 Wi-Fi Direct 拓扑结构,使用智能手机作为处理平台。所提出的系统使更便宜的车辆能够使用 ADAS 功能,并研究了使用无线网络在车内环境中传输 ADAS 信息的可能性。其他 ADAS 智能手机方法利用智能手机的内置传感器;然而,本文展示了在智能手机的 ADAS 应用程序上开发的基本 ADAS 功能的应用,通过使用无线传感器数据在车辆上进行车道检测和碰撞检测。智能手机的处理能力被利用并通过卷积神经网络用作通用目标检测器,使用传感器网络的视频流。分析了网络的性能,以确保网络能够实时进行检测。使用智能手机的低成本 CMOS 摄像头传感器网络通过 Wi-Fi Direct 找到了一种应用,可创建车内无线网络作为低成本高级驾驶辅助系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57fc/9028085/19b2967010e3/sensors-22-03026-g001.jpg

相似文献

2
A Sensor Fused Rear Cross Traffic Detection System Using Transfer Learning.
Sensors (Basel). 2021 Sep 9;21(18):6055. doi: 10.3390/s21186055.
3
Driving Performance and Technology Acceptance Evaluation in Real Traffic of a Smartphone-Based Driver Assistance System.
Int J Environ Res Public Health. 2020 Sep 28;17(19):7098. doi: 10.3390/ijerph17197098.
4
Field effectiveness evaluation of advanced driver assistance systems.
Traffic Inj Prev. 2018;19(sup2):S91-S95. doi: 10.1080/15389588.2018.1527030. Epub 2018 Dec 13.
5
Communication Network Architectures for Driver Assistance Systems.
Sensors (Basel). 2021 Oct 16;21(20):6867. doi: 10.3390/s21206867.
6
Vehicle and Driver Monitoring System Using On-Board and Remote Sensors.
Sensors (Basel). 2023 Jan 10;23(2):814. doi: 10.3390/s23020814.
9
Injury mitigation estimates for an intersection driver assistance system in straight crossing path crashes in the United States.
Traffic Inj Prev. 2017 May 29;18(sup1):S9-S17. doi: 10.1080/15389588.2017.1300257. Epub 2017 Mar 21.
10
Survey of Cooperative Advanced Driver Assistance Systems: From a Holistic and Systemic Vision.
Sensors (Basel). 2022 Apr 15;22(8):3040. doi: 10.3390/s22083040.

引用本文的文献

1
Dissecting Latency in 360° Video Camera Sensing Systems.
Sensors (Basel). 2022 Aug 11;22(16):6001. doi: 10.3390/s22166001.

本文引用的文献

1
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.
IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1137-1149. doi: 10.1109/TPAMI.2016.2577031. Epub 2016 Jun 6.
2
A smartphone-based driver safety monitoring system using data fusion.
Sensors (Basel). 2012 Dec 17;12(12):17536-52. doi: 10.3390/s121217536.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验