Xu Wenxin, Zhao Guiqiu, Li Mubai, Pan Yuyu, Ma Hongzhuang, Sun Riming, Wang Jungan, Liu You, Chen Cheng, Huang Wei, Wang Fangfang, Qin Tianshi
Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, Jiangsu, 211816, China.
School of Petrochemical Engineering, Shenyang University of Technology, 30 Guanghua Street, Liaoyang, 111003, P. R. China.
Small. 2022 May;18(21):e2106632. doi: 10.1002/smll.202106632. Epub 2022 Apr 23.
For achieving high-performance p-i-n perovskite solar cells (PSCs), hole transporting materials (HTMs) are critical to device functionality and represent a major bottleneck to further enhancing device stability and efficiency in the inverted devices. Three dopant-free polymeric HTMs are developed based on different linkage sites of triphenylamine and phenylenevinylene repeating units in their main backbone structures. The backbone curvatures of the polymeric HTMs affect the morphology and hole mobility of the polymers and further change the crystallinity of perovskite films. By using PTA-mPV with moderate molecular curvature, p-i-n PSCs with high efficiency of 19.5% and long-term stability can be achieved. The better performance is attributed to the more effective hole extraction ability, higher charge-carrier mobility, and lower interfacial charge recombination. Furthermore, these three polymeric HTMs are synthesized without any noble metal catalyst, and show great advantages in future application owing to the low-cost.
为了实现高性能的p-i-n型钙钛矿太阳能电池(PSC),空穴传输材料(HTM)对于器件功能至关重要,并且是进一步提高倒置器件的稳定性和效率的主要瓶颈。基于三苯胺和苯撑乙烯基重复单元在其主链结构中的不同连接位点,开发了三种无掺杂剂的聚合物HTM。聚合物HTM的主链曲率影响聚合物的形态和空穴迁移率,并进一步改变钙钛矿薄膜的结晶度。通过使用具有适度分子曲率的PTA-mPV,可以实现效率高达19.5%且具有长期稳定性的p-i-n型PSC。更好的性能归因于更有效的空穴提取能力、更高的电荷载流子迁移率和更低的界面电荷复合。此外,这三种聚合物HTM的合成无需任何贵金属催化剂,并且由于成本低而在未来应用中显示出巨大优势。