Lin Wentao, Liu Jiapeng, Xue Lichun, Li Yueqing, Yu Haoze, Xiong Yongqiang, Chen Dengjie, Ciucci Francesco, Yu Jing
College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Guangdong Engineering & Technology Research Centre of Graphene-Like Materials and Products, Jinan University, Guangzhou 510632, China.
Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region.
J Colloid Interface Sci. 2022 Sep;621:222-231. doi: 10.1016/j.jcis.2022.04.051. Epub 2022 Apr 12.
Liquid organic electrolytes commonly employed in commercial Li-ion batteries suffer from safety issues such as flammability and explosions. Replacing liquid electrolytes with nonflammable electrolytes has become increasingly attractive in the development of safe, high-energy Li-metal batteries (LMBs). In this work, nonflammable, robust, and flexible composite polymer-polymer electrolytes (PPEs) were successfully fabricated by flame-retardant solution casting with polyimide (PI) and polyvinylidene fluoride (PVDF). The optimized nonflammable PPEs (e.g., PPE-50) demonstrate not only good mechanical properties (i.e., a high tensile strength of 29.6 MPa with an elongation at break of 87.2%), but also high Li salts dissolubility, the former of which ensures the suppression of Li dendrites, while the latter further improves the ionic conductivity (∼1.86 × 10 S cm at 30 °C). The resulting symmetric cells (Li|PPE-50|Li) offer excellent Li stripping and plating stability for 1000 h at 0.5 mA cm/0.25 mAh cm and 600 h at 2.0 mA cm/1.0 mAh cm. In addition, the LiFePO|PPE-50|Li half cells show high cycling performance (e.g., a reversible discharge capacity of 135.9 mAh g after 300 cycles at 1C) and rate capability (e.g., 117.2 mAh g at 4C). The PPE-50 is also compatible with a high-voltage cathode (e.g., LiNiMnCoO), and the resulting batteries demonstrate long-term cycling stability with a high cut-off voltage of 4.5 V vs. Li/Li. Because of the incorporation of a mechanically robust and thermally stable PI, a polar PVDF, and flame-retardant trimethyl phosphate (TMP) within PPEs, as well as the coordination between Li salts and TMP, and the interaction between Li salts and polymers (especially between Li bis(oxalato)borate) and PI, as well as the bis(oxalato)borate anion and PI), PPEs show great potential for practical and high-energy LMBs without safety concerns.
商业锂离子电池中常用的液体有机电解质存在诸如易燃性和爆炸等安全问题。在安全、高能量锂金属电池(LMBs)的开发中,用不可燃电解质替代液体电解质变得越来越有吸引力。在这项工作中,通过用聚酰亚胺(PI)和聚偏二氟乙烯(PVDF)进行阻燃溶液浇铸,成功制备了不可燃、坚固且柔性的复合聚合物 - 聚合物电解质(PPEs)。优化后的不可燃PPEs(例如PPE - 50)不仅表现出良好的机械性能(即高拉伸强度为29.6 MPa,断裂伸长率为87.2%),而且具有高锂盐溶解性,前者确保了锂枝晶的抑制,而后者进一步提高了离子电导率(30°C时约为1.86×10 S cm)。所得的对称电池(Li|PPE - 50|Li)在0.5 mA cm/0.25 mAh cm下提供1000小时以及在2.0 mA cm/1.0 mAh cm下提供600小时的优异锂剥离和镀覆稳定性。此外,LiFePO|PPE - 50|Li半电池显示出高循环性能(例如,在1C下300次循环后可逆放电容量为135.9 mAh g)和倍率性能(例如,在4C下为117.2 mAh g)。PPE - 50还与高压正极(例如LiNiMnCoO)兼容,所得电池在相对于Li/Li为4.5 V 的高截止电压下表现出长期循环稳定性。由于在PPEs中引入了机械坚固且热稳定的PI、极性PVDF和阻燃剂磷酸三甲酯(TMP),以及锂盐与TMP之间的配位作用、锂盐与聚合物之间的相互作用(特别是双(草酸根)硼酸锂与PI之间以及双(草酸根)硼酸根阴离子与PI之间),PPEs在无安全问题的实用和高能量LMBs方面显示出巨大潜力。