Suppr超能文献

使用改进的 Jaya 算法解决带批量流的双目标分布式流水车间调度问题。

Solving Biobjective Distributed Flow-Shop Scheduling Problems With Lot-Streaming Using an Improved Jaya Algorithm.

出版信息

IEEE Trans Cybern. 2023 Jun;53(6):3818-3828. doi: 10.1109/TCYB.2022.3164165. Epub 2023 May 17.

Abstract

A distributed flow-shop scheduling problem with lot-streaming that considers completion time and total energy consumption is addressed. It requires to optimally assign jobs to multiple distributed factories and, at the same time, sequence them. A biobjective mathematic model is first developed to describe the considered problem. Then, an improved Jaya algorithm is proposed to solve it. The Nawaz-Enscore-Ham (NEH) initializing rule, a job-factory assignment strategy, the improved strategies for makespan and energy efficiency are designed based on the problem's characteristic to improve the Jaya's performance. Finally, experiments are carried out on 120 instances of 12 scales. The performance of the improved strategies is verified. Comparisons and discussions show that the Jaya algorithm improved by the designed strategies is highly competitive for solving the considered problem with makespan and total energy consumption criteria.

摘要

考虑完成时间和总能耗的分布式流水车间分批排序问题。该问题需要将作业最优地分配到多个分布式工厂,并对其进行排序。首先,开发了一个双目标数学模型来描述所考虑的问题。然后,提出了一种改进的 Jaya 算法来解决它。根据问题的特点,设计了 Nawaz-Enscore-Ham(NEH)初始化规则、作业-工厂分配策略、改进的最大完工时间和能源效率策略,以提高 Jaya 的性能。最后,在 12 个规模的 120 个实例上进行了实验。验证了改进策略的性能。比较和讨论表明,所设计策略改进的 Jaya 算法在解决最大完工时间和总能耗标准的考虑问题方面具有很强的竞争力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验