Department of Neurochemistry, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
Department of Neurochemistry, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
Neurosci Res. 2022 Jun;179:79-90. doi: 10.1016/j.neures.2022.04.004. Epub 2022 Apr 22.
In dendrites and synapses in the neuronal circuit, temporal and spatial trains of Ca transients are triggered as a consequence of 4-dimensional patterns of synaptic transmission, local dendritic spikes and action potential firing. Among downstream Ca effectors, Ca/calmodulin-dependent kinase II (CaMKII) and Ca/calmodulin-dependent phosphatase calcineurin (CaN) interactively and competitively regulate essential neuronal functions, such as bidirectional synaptic plasticity, gene expression, learning and memory. New developments in optical imaging and local optical manipulation revealed distinctive spatiotemporal features of bidirectional dendritic spine structural plasticity that are co-regulated by CaMKII and CaN. We created a novel set of genetically-encoded fluorescent probes to specifically investigate key activation processes of CaMKII and CaN in living neurons. Multiplex FRET imaging approaches revealed distinct spatiotemporal properties of CaMKII and CaN co-activation in dendrites and synapses that likely underlie the biochemical machinery to decode information represented in the patterned neuronal input to decide properties of spine structural plasticity. We also created new orthogonal color variants of linearly performing Ca indicators XCaMPs that can be easily multiplexed with a number of other fluorescent probes. These advances facilitate future investigation on how biochemical decoding is achieved in neurons in the living brain, and will shed new light on complex brain information dynamics at the crossroad of neurochemistry, pathophysiology and neuro-inspired engineering.
在神经元回路的树突和突触中,由于突触传递的 4 维模式、局部树突峰和动作电位的触发,会引发钙瞬变的时空调制列车。在下游钙效应器中,钙/钙调蛋白依赖性激酶 II(CaMKII)和钙/钙调蛋白依赖性磷酸酶钙调神经磷酸酶(CaN)相互作用并竞争调节基本的神经元功能,如双向突触可塑性、基因表达、学习和记忆。光学成像和局部光学操纵的新发展揭示了双向树突棘结构可塑性的独特时空特征,这些特征受 CaMKII 和 CaN 的共同调节。我们创建了一组新的遗传编码荧光探针,专门研究活神经元中 CaMKII 和 CaN 的关键激活过程。多重 FRET 成像方法揭示了树突和突触中 CaMKII 和 CaN 共同激活的独特时空特性,这可能为解码以图案化神经元输入表示的信息的生化机制奠定基础,以决定棘突结构可塑性的特性。我们还创建了新的正交颜色变体的线性执行 Ca 指示剂 XCaMPs,可以与许多其他荧光探针轻松复用。这些进展有助于未来研究活脑神经元中的生化解码是如何实现的,并将为神经化学、病理生理学和神经启发工程交汇处的复杂大脑信息动力学提供新的见解。