Du Guowang, Zhou Lihua, Lu Kevin, Wu Hao, Xu Zhimin
IEEE Trans Neural Netw Learn Syst. 2023 Dec;34(12):10279-10293. doi: 10.1109/TNNLS.2022.3165542. Epub 2023 Nov 30.
Multiview subspace clustering has turned into a promising technique due to its encouraging ability to discover the underlying subspace structure. In recent studies, a lot of subspace clustering methods have been developed to strengthen the clustering performance of multiview data, but these methods rarely consider simultaneously the nonlinear structure and multilevel representation (MLR) information in multiview data as well as the data distribution of latent representation. To address these problems, we develop a new Multiview Subspace Clustering with MLRs and Adversarial Regularization (MvSC-MRAR), where multiple deep auto-encoders are utilized to model nonlinear structure information of multiview data, multiple self-expressive layers are introduced into each deep auto-encoder to extract multilevel latent representations of each view data, and diversity regularizations are designed to preserve complementary information contained in different layers and different views. Furthermore, a universal discriminator based on adversarial training is developed to enforce the output of each encoder to obey a given prior distribution, so that the affinity matrix for spectral clustering (SPC) is more realistic. Comprehensive empirical evaluation with nine real-world multiview datasets indicates that our proposed MvSC-MRAR achieves significant improvements than several state-of-the-art methods in terms of clustering accuracy (ACC) and normalized mutual information (NMI).
多视图子空间聚类由于其发现潜在子空间结构的能力令人鼓舞,已成为一种很有前景的技术。在最近的研究中,已经开发了许多子空间聚类方法来增强多视图数据的聚类性能,但这些方法很少同时考虑多视图数据中的非线性结构和多级表示(MLR)信息以及潜在表示的数据分布。为了解决这些问题,我们开发了一种新的具有多级表示和对抗正则化的多视图子空间聚类(MvSC-MRAR),其中利用多个深度自动编码器对多视图数据的非线性结构信息进行建模,在每个深度自动编码器中引入多个自表达层以提取每个视图数据的多级潜在表示,并设计多样性正则化以保留不同层和不同视图中包含的互补信息。此外,基于对抗训练开发了一个通用判别器,以强制每个编码器的输出服从给定的先验分布,从而使用于谱聚类(SPC)的亲和矩阵更符合实际。对九个真实世界多视图数据集的综合实证评估表明,我们提出的MvSC-MRAR在聚类准确率(ACC)和归一化互信息(NMI)方面比几种先进方法有显著提高。