Suppr超能文献

使用内聚有限元模型研究循环载荷下关节软骨中的裂纹扩展

Crack propagation in articular cartilage under cyclic loading using cohesive finite element modeling.

作者信息

Orozco Gustavo A, Tanska Petri, Gustafsson Anna, Korhonen Rami K, Isaksson Hanna

机构信息

Department of Biomedical Engineering, Lund University, Box 188, 221 00, Lund, Sweden; Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, FI-70210, Kuopio, Finland.

Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, FI-70210, Kuopio, Finland.

出版信息

J Mech Behav Biomed Mater. 2022 Jul;131:105227. doi: 10.1016/j.jmbbm.2022.105227. Epub 2022 Apr 14.

Abstract

Severe joint injuries often involve cartilage defects that propagate after mechanical loading. The propagation of these lesions may contribute to the development of post-traumatic osteoarthritis (PTOA). However, the mechanisms behind their propagation remain unknown. Currently, no numerical predictive methods exist for estimating crack propagation in cartilage under cyclic loading, yet they would provide essential insights into crack growth in injured tissue after trauma. Here, we present a numerical approach to estimate crack propagation in articular cartilage under cyclic loading using a cohesive damage model. Four different material models for cartilage (hyperelastic, poro-hyperelastic, poro-hyper-viscoelastic, and fibril-reinforced poro-hyperelastic (FRPHE) with different collagen orientations) were implemented. Our numerical cohesive damage model was able to replicate the experimental crack length reported in the literature, showing greater crack length with an increasing number of loading cycles. Damage initiation stress (4.35-4.73 MPa) and fracture energy (0.97-1.55 N/mm) values obtained for the poro-hyperelastic, poro-hyper-viscoelastic, and parallel-FRPHE models were within the range of what has been reported previously. The crack growth predictions obtained by the FRPHE models showed the influence of anisotropy of the fibrillar matrix on the cartilage response. Our results indicate that our cohesive damage model could potentially be used to estimate the adverse conditions in injured soft tissue such as osteochondral lesions, menisci tears, or partial ligament ruptures under (ab)normal biomechanical scenarios.

摘要

严重的关节损伤通常涉及机械负荷后扩展的软骨缺损。这些损伤的扩展可能导致创伤后骨关节炎(PTOA)的发展。然而,其扩展背后的机制仍然未知。目前,尚无用于估计循环负荷下软骨中裂纹扩展的数值预测方法,而这些方法将为创伤后受伤组织中的裂纹生长提供重要见解。在此,我们提出一种数值方法,使用内聚损伤模型来估计循环负荷下关节软骨中的裂纹扩展。实施了四种不同的软骨材料模型(超弹性、多孔超弹性、多孔超粘弹性以及具有不同胶原取向的纤维增强多孔超弹性(FRPHE))。我们的数值内聚损伤模型能够复制文献中报道的实验裂纹长度,显示出随着加载循环次数的增加裂纹长度更大。多孔超弹性、多孔超粘弹性和平行FRPHE模型获得的损伤起始应力(4.35 - 4.73兆帕)和断裂能(0.97 - 1.55牛/毫米)值在先前报道的范围内。FRPHE模型获得的裂纹扩展预测显示了纤维状基质各向异性对软骨反应的影响。我们的结果表明,我们的内聚损伤模型可能潜在地用于估计受伤软组织(如骨软骨损伤、半月板撕裂或部分韧带断裂)在(异常)正常生物力学情况下的不利状况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验