Suppr超能文献

[评估新冠病毒快速抗原检测在新冠肺炎患者中的诊断性能]

[Evaluation of the Diagnostic Performance of SARS-CoV-2 Rapid Antigen Tests in COVID-19 Patients].

作者信息

Tuyji Tok Yeşim, Dinç Harika Öykü, Akçin Rüveyda, Daşdemir Ferhat Osman, Eryiğit Önder Yüksel, Demirci Mehmet, Gareayaghi Nesrin, Kuşkucu Mert Ahmet, Kocazeybek Bekir Sami

机构信息

Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Medical Microbiology, Istanbul, Turkey.

Bezmialem Vakıf University Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Istanbul, Turkey.

出版信息

Mikrobiyol Bul. 2022 Apr;56(2):251-262. doi: 10.5578/mb.20229805.

Abstract

The gold standard in the definitive diagnosis of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is nucleic acid amplification tests (NAAT) due to their high sensitivity and specificity in detecting viral ribonucleic acid. However, while leaving two years behind in the pandemic, resources have come to the point of exhaustion in terms of both the economy and the manpower working in the field of health services. Therefore, the need for rapid, simple and accurate tests to diagnose SARS-CoV-2 infection continues. In this study, it was aimed to compare the performance characteristics of SARS-CoV-2 rapid antigen tests (RAgT) in the diagnosis of coronavirus disease 2019 (COVID-19) cases with the real-time reverse transcription-polymerase chain reaction (rRT-PCR) method. In Istanbul University-Cerrahpaşa Faculty of Medicine COVID-19 Molecular Diagnosis Laboratory, SARS-CoV-2 RNA positive respiratory tract samples with viral loads of <25 Ct (cycle of treshold), 25-29 Ct, 30-35 Ct and 35<Ct, a total of 205 patient samples were selected in four groups. SARS-CoV-2 positive samples were studied by lateral flow method (LFA) using twelve commercial RAgTs of different companies and their performances were evaluated. In addition, 90 samples were selected from various respiratory tract samples archived, which were sent to our laboratory for the identification of the non-COVID-19 pathogen(s) causing the respiratory tract infection between 2020-2022 and their specificities for RAgTs were evaluated to avoid cross reactivity. The sensitivities of the SARS-CoV-2 RAgTs included in the study, ranged from 40.4-97.5%, while the sensitivity of most of the kits (8/12), at <25 Ct values, was <90%, which is the minimum limit in the European Centre for Disease Prevention and Control (ECDC)'s guideline for the use of SARS-CoV-2 RAgTs. The specificities of RAgTs were found to be between 90-100%. When the concordance of SARS-CoV-2 RAgTs with rRT-PCR positivity was evaluated with the kappa coefficient, the concordance of only one RAgT was found to be statistically significant (Kappa= 0.88). SARS-CoV-2 RAgTs have a potential use as a diagnostic tool in symptomatic people, as a routine screening tool in community living environments, and in situations such as ending the isolation of the patients. Each country should carry out validation studies before the use of these tests, taking into account of their socio-economic situation, healthcare infrastructure and current epidemiological data of COVID-19.

摘要

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)确诊的金标准是核酸扩增试验(NAAT),因为它们在检测病毒核糖核酸方面具有高灵敏度和特异性。然而,在疫情已过去两年的当下,卫生服务领域的经济资源和人力资源都已接近枯竭。因此,对用于诊断SARS-CoV-2感染的快速、简单且准确的检测方法的需求依然存在。在本研究中,旨在将SARS-CoV-2快速抗原检测(RAgT)在诊断2019冠状病毒病(COVID-19)病例中的性能特征与实时逆转录-聚合酶链反应(rRT-PCR)方法进行比较。在伊斯坦布尔大学-切拉比帕夏医学院COVID-19分子诊断实验室,选择了病毒载量<25 Ct(阈值循环数)、25-29 Ct、30-35 Ct和35<Ct的SARS-CoV-2 RNA阳性呼吸道样本,共205份患者样本分为四组。使用不同公司的12种商用RAgT通过侧向流动法(LFA)对SARS-CoV-2阳性样本进行研究,并评估其性能。此外,从存档的各种呼吸道样本中选取90份样本,这些样本是在2020年至2022年期间被送到我们实验室用于鉴定引起呼吸道感染的非COVID-19病原体的,同时评估它们对RAgT的特异性以避免交叉反应。本研究中纳入的SARS-CoV-2 RAgT的灵敏度范围为40.4%-97.5%,而大多数试剂盒(8/12)在<25 Ct值时的灵敏度<90%,这是欧洲疾病预防控制中心(ECDC)关于使用SARS-CoV-2 RAgT指南中的最低限度。RAgT的特异性在90%-100%之间。当用kappa系数评估SARS-CoV-2 RAgT与rRT-PCR阳性的一致性时,发现只有一种RAgT的一致性具有统计学意义(Kappa = 0.88)。SARS-CoV-2 RAgT有潜力作为有症状人群的诊断工具、社区生活环境中的常规筛查工具以及用于诸如结束患者隔离等情况。每个国家在使用这些检测方法之前,应考虑其社会经济状况、医疗保健基础设施和当前COVID-19的流行病学数据,开展验证研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验