Suppr超能文献

使用机器学习方法预测机械通气充血性心力衰竭患者的住院死亡率。

Prediction of hospital mortality in mechanically ventilated patients with congestive heart failure using machine learning approaches.

机构信息

Chinese Academy of Medical Sciences, Peking Union Medical College, National Center for Cardiovascular Diseases, Fu Wai Hospital, Beijing, China.

Chinese Academy of Medical Sciences, Peking Union Medical College, National Center for Cardiovascular Diseases, Fu Wai Hospital, Beijing, China.

出版信息

Int J Cardiol. 2022 Jul 1;358:59-64. doi: 10.1016/j.ijcard.2022.04.063. Epub 2022 Apr 26.

Abstract

BACKGROUND

Mechanically ventilated patients with congestive heart failure (CHF) are at high-risk of mortality. We aimed to develop and validate a prediction model based on machine learning (ML) algorithms to predict hospital mortality in mechanically ventilated patients with CHF.

METHODS

Least absolute shrinkage and selection operator (LASSO) regression was used to identify the key features. Hyperparameters optimization (HPO) was conducted to modify the prediction model. The area under the receiver operating characteristic curve (AUC), accuracy, calibration curve and decision curve analysis were used to evaluate prediction performance. The final model was validated using an external validation set from another database. The prediction results were represented by a nomogram.

RESULTS

A total of 4530 qualified patients were included. Among 11 ML-algorithms, CatBoost showed the best prediction performance (AUC = 0.833). And 10 key features (10/63) were selected based on the LASSO regression. After HPO, the prediction performance of the CatBoost model based on the key features was significantly improved (AUCs: 0.805 vs. 0.821). Additionally, the CatBoost model also showed the satisfactory prediction performance in the external validation set (AUC = 0.806).

CONCLUSION

The present study developed and validated a CatBoost model, which could accurately predict hospital mortality in mechanically ventilated patients with CHF.

摘要

背景

患有充血性心力衰竭(CHF)的机械通气患者死亡率较高。我们旨在开发和验证一种基于机器学习(ML)算法的预测模型,以预测患有 CHF 的机械通气患者的住院死亡率。

方法

使用最小绝对收缩和选择算子(LASSO)回归来识别关键特征。进行超参数优化(HPO)以修改预测模型。使用接收者操作特征曲线下的面积(AUC)、准确性、校准曲线和决策曲线分析来评估预测性能。使用来自另一个数据库的外部验证集验证最终模型。预测结果由列线图表示。

结果

共纳入 4530 名合格患者。在 11 种 ML 算法中,CatBoost 显示出最佳的预测性能(AUC=0.833)。根据 LASSO 回归,选择了 10 个关键特征(10/63)。经过 HPO 后,基于关键特征的 CatBoost 模型的预测性能得到了显著提高(AUCs:0.805 vs. 0.821)。此外,CatBoost 模型在外部验证集中也表现出令人满意的预测性能(AUC=0.806)。

结论

本研究开发并验证了一种 CatBoost 模型,该模型可准确预测患有 CHF 的机械通气患者的住院死亡率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验