Li Huixi, Han Xue, Zhao Wen, Azhar Alowasheeir, Jeong Seunghwan, Jeong Deugyoung, Na Jongbeom, Wang Shengping, Yu Jingxian, Yamauchi Yusuke
Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
Mater Horiz. 2022 Jul 4;9(7):1788-1824. doi: 10.1039/d2mh00075j.
Electrochemical water splitting is a promising technology for hydrogen production and sustainable energy conversion, but the existing electrolytic cells lack a sufficient number of robust and highly active anodic electrodes for the oxygen evolution reaction (OER). Electrochemical synthesis technology provides a feasible route for the preparation of independent OER electrodes with high utilization of active sites, fast mass transfer, and a simple preparation process. A comprehensive review of the electrochemical synthesis of nano/microstructure transition metal-based OER materials is provided. First, some fundamentals of electrochemical synthesis are introduced, including electrochemical synthesis strategies, electrochemical synthesis substrates, the electrolyte used in electrochemical synthesis, and the combination of electrochemical synthesis and other synthesis methods. Second, the morphology and properties of electrochemical synthetic materials are summarized and introduced from the viewpoint of structural design. Then, the latest progress regarding the development of transition metal-based OER electrocatalysts is reviewed, including the classification of metals/alloys, oxides, hydroxides, sulfides, phosphides, selenides, and other transition metal compounds. In addition, the oxygen evolution mechanism and rate-determining steps of transition metal-based catalysts are also discussed. Finally, the advantages, challenges, and opportunities regarding the application of electrochemical techniques in the synthesis of transition metal-based OER electrocatalysts are summarized. This review can provide inspiration for researchers and promote the development of water splitting technology.
电化学水分解是一种很有前景的制氢和可持续能源转换技术,但现有的电解槽缺乏足够数量的用于析氧反应(OER)的坚固且高活性的阳极电极。电化学合成技术为制备具有高活性位点利用率、快速传质和简单制备过程的独立OER电极提供了一条可行的途径。本文对纳米/微观结构过渡金属基OER材料的电化学合成进行了全面综述。首先,介绍了电化学合成的一些基本原理,包括电化学合成策略、电化学合成基底、电化学合成中使用的电解质以及电化学合成与其他合成方法的结合。其次,从结构设计的角度总结并介绍了电化学合成材料的形貌和性能。然后,综述了过渡金属基OER电催化剂开发的最新进展,包括金属/合金、氧化物、氢氧化物、硫化物、磷化物、硒化物和其他过渡金属化合物的分类。此外,还讨论了过渡金属基催化剂的析氧机理和速率决定步骤。最后,总结了电化学技术在过渡金属基OER电催化剂合成中的应用的优点、挑战和机遇。这篇综述可以为研究人员提供灵感,并促进水分解技术的发展。