Mosesson M W, DiOrio J P, Müller M F, Shainoff J R, Siebenlist K R, Amrani D L, Homandberg G A, Soria J, Soria C, Samama M
Blood. 1987 Apr;69(4):1073-81.
Release of fibrinopeptide B from fibrinogen by copperhead venom procoagulant enzyme results in a form of fibrin (beta-fibrin) with weaker self-aggregation characteristics than the normal product (alpha beta-fibrin) produced by release of fibrinopeptides A (FPA) and B (FPB) by thrombin. We investigated the ultrastructure of these two types of fibrin as well as that of beta-fibrin prepared from fibrinogen Metz (A alpha 16 Arg----Cys), a homozygous dysfibrinogenemic mutant that does not release FPA. At 14 degrees C and physiologic solvent conditions (0.15 mol/L of NaCl, 0.015 mol/L of Tris buffer pH 7.4), the turbidity (350 nm) of rapidly polymerizing alpha beta-fibrin (thrombin 1 to 2 U/mL) plateaued in less than 6 min and formed a "coarse" matrix consisting of anastomosing fiber bundles (mean diameter 92 nm). More slowly polymerizing alpha beta-fibrin (thrombin 0.01 and 0.001 U/mL) surpassed this turbidity after greater than or equal to 60 minutes and concomitantly developed a network of thicker fiber bundles (mean diameters 118 and 186 nm, respectively). Such matrices also contained networks of highly branched, twisting, "fine" fibrils (fiber diameters 7 to 30 nm) that are usually characteristic of matrices formed at high ionic strength and pH. Slowly polymerizing beta-fibrin, like slowly polymerizing alpha beta-fibrin, displayed considerable quantities of fine matrix in addition to an underlying thick cable network (mean fiber diameter 135 nm), whereas rapidly polymerizing beta-fibrin monomer was comprised almost exclusively of wide, poorly anastomosed, striated cables (mean diameter 212 nm). Metz beta-fibrin clots were more fragile than those of normal beta-fibrin and were comprised almost entirely of a fine network. Metz fibrin could be induced, however, to form thick fiber bundles (mean diameter 76 nm) in the presence of albumin at a concentration (500 mumol/L) in the physiologic range and resembled a Metz plasma fibrin clot in that regard. The diminished capacity of Metz beta-fibrin to form thick fiber bundles may be due to impaired use or occupancy of a polymerization site exposed by FPB release. Our results indicate that twisting fibrils are an inherent structural feature of all forms of assembling fibrin, and suggest that mature beta-fibrin or alpha beta-fibrin clots develop from networks of thin fibrils that have the ability to coalesce to form thicker fiber bundles.
铜头蝰蛇毒促凝酶使纤维蛋白原释放纤维蛋白肽B,产生的一种纤维蛋白(β-纤维蛋白),其自身聚集特性比凝血酶释放纤维蛋白肽A(FPA)和B(FPB)产生的正常产物(αβ-纤维蛋白)弱。我们研究了这两种纤维蛋白以及由纤维蛋白原Metz(Aα16 Arg→Cys)制备的β-纤维蛋白的超微结构,Metz是一种不释放FPA的纯合异常纤维蛋白原血症突变体。在14℃和生理溶剂条件下(0.15 mol/L NaCl,0.015 mol/L Tris缓冲液pH 7.4),快速聚合的αβ-纤维蛋白(凝血酶1至2 U/mL)在不到6分钟内浊度(350 nm)达到平稳,并形成由吻合纤维束组成的“粗糙”基质(平均直径92 nm)。聚合较慢的αβ-纤维蛋白(凝血酶0.01和0.001 U/mL)在大于或等于60分钟后超过此浊度,并同时形成更粗的纤维束网络(平均直径分别为118和186 nm)。这种基质还包含高度分支、扭曲的“细”原纤维网络(纤维直径7至30 nm),这通常是在高离子强度和pH下形成的基质的特征。聚合缓慢的β-纤维蛋白,与聚合缓慢的αβ-纤维蛋白一样,除了底层的粗电缆网络(平均纤维直径135 nm)外,还显示出大量的细基质,而快速聚合的β-纤维蛋白单体几乎完全由宽的、吻合不良的、有条纹的电缆组成(平均直径212 nm)。Metzβ-纤维蛋白凝块比正常β-纤维蛋白凝块更脆弱,几乎完全由细网络组成。然而,在生理范围内浓度为(500 μmol/L)的白蛋白存在下,Metz纤维蛋白可被诱导形成粗纤维束(平均直径76 nm),在这方面类似于Metz血浆纤维蛋白凝块。Metzβ-纤维蛋白形成粗纤维束的能力降低可能是由于FPB释放暴露的聚合位点使用或占据受损。我们的结果表明,扭曲的原纤维是所有形式的组装纤维蛋白的固有结构特征,并表明成熟的β-纤维蛋白或αβ-纤维蛋白凝块由具有聚合并形成更粗纤维束能力的细原纤维网络发展而来。