Kim Dongheun, Shin Sun Hae Ra, Kim Yeonhoo, Crossley Kenneth, Kim Yerim, Han Hyungkyu, Yoo Jinkyoung
Center for Integrated Nanotechnologies, Los Alamos National Laboratory Los Alamos NM 87545 USA
RSC Adv. 2020 Apr 3;10(23):13655-13661. doi: 10.1039/d0ra00372g. eCollection 2020 Apr 1.
Hierarchical architectures composed of nanomaterials in different forms are essential to improve the performance of lithium-ion battery (LIB) anodes. Here, we systematically studied the effects of hierarchical ZnO nanostructures on the electrochemical performance of LIBs. ZnO nanowire (NW) trunks were decorated with ZnO NWs or ZnO nanosheets (NSs) by successive hydrothermal synthesis to create hierarchical three-dimensional nanostructures. The branched ZnO NSs on the ZnO NW trunk exhibited a two-fold higher specific gravimetric capacity compared to ZnO NWs and branched ZnO NWs on ZnO NW trunks after 100 cycles of charging-discharging at 0.2C (197.4 mA g). The improvement in battery anode performance is attributable to the increased interfacial area between the electrodes and electrolyte, and the void space of the branched NSs that facilitates lithium ion transport and volume changes during cycling.
由不同形式的纳米材料组成的分层结构对于提高锂离子电池(LIB)负极的性能至关重要。在此,我们系统地研究了分层ZnO纳米结构对LIBs电化学性能的影响。通过连续水热合成,用ZnO纳米线(NW)或ZnO纳米片(NS)修饰ZnO纳米线主干,以创建分层三维纳米结构。在0.2C(197.4 mA g)下进行100次充放电循环后,ZnO纳米线主干上的分支状ZnO NS的比容量比ZnO纳米线和ZnO纳米线主干上的分支状ZnO纳米线高出两倍。电池负极性能的提高归因于电极与电解质之间界面面积的增加,以及分支状NS的空隙空间,这有利于锂离子传输和循环过程中的体积变化。