Suppr超能文献

如何利用突变体文库鉴定病原菌中生物膜形成所需的基因。

How to Use a Mutant Library to Identify Genes Required for Biofilm Formation in the Pathogenic .

作者信息

Anderson Tania M, Shammami Marcelio A, Taddei Steven M, Finkel Jonathan S

机构信息

Department of Biology, College of Engineering and Science, University of Detroit Mercy, USA.

出版信息

UJEMI. 2020;2:1-13. doi: 10.14288/ujemi.v2i.193711. Epub 2021 Jan 20.

Abstract

With over 1 billion infections and the causative agents showing critical diseases such as pancreatic cancer, the study of pathogenic fungi has never been more critical. In 2017, the United States spent $7.2 billion on fungal diseases. $4.5 billion was allocated to 75,055 hospitalizations, while $2.6 billion went to 8,993,230 outpatient visits. For infections specifically, the cost was $1.4 billion. Currently, there are few classes of antifungals available, and resistance is growing. The identification of genes required for biofilm formation is essential for new antifungal development. This review details how to identify, verify, and characterize defective biofilm formation mutants in . This includes how to run an biofilm formation assay, how to create clean deletions using the modified CRISPR-Cas9 system, how to assay to identify the potential causes of the defect, and how to create complementation strains to confirm the mutant defect.

摘要

致病性真菌感染超过10亿例,其病原体引发诸如胰腺癌等严重疾病,因此对致病性真菌的研究从未如此关键。2017年,美国在真菌疾病上花费了72亿美元。其中45亿美元用于75055例住院治疗,26亿美元用于8993230例门诊就诊。仅感染方面的花费就达14亿美元。目前,可用的抗真菌药物种类很少,且耐药性正在增强。确定生物膜形成所需的基因对于新型抗真菌药物的开发至关重要。本综述详细介绍了如何鉴定、验证和表征酿酒酵母中生物膜形成缺陷突变体。这包括如何进行酿酒酵母生物膜形成测定,如何使用改良的CRISPR-Cas9系统创建无痕缺失,如何进行测定以确定缺陷的潜在原因,以及如何创建互补菌株以确认突变体缺陷。

相似文献

1
How to Use a Mutant Library to Identify Genes Required for Biofilm Formation in the Pathogenic .
UJEMI. 2020;2:1-13. doi: 10.14288/ujemi.v2i.193711. Epub 2021 Jan 20.
2
Genetic Analysis of Family Transcription Factors in Using New CRISPR-Cas9 Approaches.
mSphere. 2018 Nov 21;3(6):e00545-18. doi: 10.1128/mSphere.00545-18.
5
Global Identification of Biofilm-Specific Proteolysis in Candida albicans.
mBio. 2016 Sep 13;7(5):e01514-16. doi: 10.1128/mBio.01514-16.
6
Biofilm-forming capacity of blood-borne Candida albicans strains and effects of antifungal agents.
Rev Argent Microbiol. 2018 Jan-Mar;50(1):62-69. doi: 10.1016/j.ram.2017.05.003. Epub 2017 Oct 6.
7
[Mechanism of butyl alcohol extract of Baitouweng Decoction (BAEB) on Candida albicans biofilms based on pH signal pathway].
Zhongguo Zhong Yao Za Zhi. 2019 Jan;44(2):350-356. doi: 10.19540/j.cnki.cjcmm.20181012.001.
9
Effect of silver nanoparticles on Candida albicans biofilms: an ultrastructural study.
J Nanobiotechnology. 2015 Dec 15;13:91. doi: 10.1186/s12951-015-0147-8.

引用本文的文献

本文引用的文献

1
Estimation of Direct Healthcare Costs of Fungal Diseases in the United States.
Clin Infect Dis. 2019 May 17;68(11):1791-1797. doi: 10.1093/cid/ciy776.
2
Rapid Gene Concatenation for Genetic Rescue of Multigene Mutants in .
mSphere. 2018 Apr 25;3(2). doi: 10.1128/mSphere.00169-18.
3
Candida albicans Gene Deletion with a Transient CRISPR-Cas9 System.
mSphere. 2016 Jun 15;1(3). doi: 10.1128/mSphere.00130-16. eCollection 2016 May-Jun.
4
Candida albicans Biofilms and Human Disease.
Annu Rev Microbiol. 2015;69:71-92. doi: 10.1146/annurev-micro-091014-104330.
5
A CRISPR system permits genetic engineering of essential genes and gene families.
Sci Adv. 2015;1(3):e1500248. doi: 10.1126/sciadv.1500248.
6
The CRISPR/Cas9 system for plant genome editing and beyond.
Biotechnol Adv. 2015 Jan-Feb;33(1):41-52. doi: 10.1016/j.biotechadv.2014.12.006. Epub 2014 Dec 20.
7
Genome editing. The new frontier of genome engineering with CRISPR-Cas9.
Science. 2014 Nov 28;346(6213):1258096. doi: 10.1126/science.1258096.
8
Bcr1 functions downstream of Ssd1 to mediate antimicrobial peptide resistance in Candida albicans.
Eukaryot Cell. 2013 Mar;12(3):411-9. doi: 10.1128/EC.00285-12. Epub 2013 Jan 11.
9
Genetic control of Candida albicans biofilm development.
Nat Rev Microbiol. 2011 Feb;9(2):109-18. doi: 10.1038/nrmicro2475. Epub 2010 Dec 29.
10
Mds3 regulates morphogenesis in Candida albicans through the TOR pathway.
Mol Cell Biol. 2010 Jul;30(14):3695-710. doi: 10.1128/MCB.01540-09. Epub 2010 May 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验