Wu Xuejiao, Zhang Jianjun, Hu Mei, Gu Le, Li Kuibao, Yang Xinchun
Heart Center, Beijing Chaoyang Hospital Jingxi Branch, Capital Medical University, Beijing, People's Republic of China.
Heart Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China.
Ther Clin Risk Manag. 2022 Apr 22;18:457-465. doi: 10.2147/TCRM.S359950. eCollection 2022.
Few evidence-based predictive tools are available to evaluate major adverse cardio- and cerebro-vascular events (MACCEs) before major noncardiac surgery. We sought to develop a new simple but effective tool for estimating surgical risk.
Using a nested case-control study design, we recruited 105 patients who experienced MACCEs and 481 patients without MACCEs during hospitalization from 10,507 patients undergoing major noncardiac surgery in Beijing Chaoyang hospital. Least absolute shrinkage and selection operator (LASSO) regression and likelihood ratio were applied to screen 401 potential features for logistic regression. A nomogram was constructed using the selected variables.
Chronic heart failure, valvular heart disease, preoperative serum creatinine >2.0 mg/dL, ASA class, neutrophil count and age were most associated with in-hospital MACCEs among all the factors. A new prediction model established based on these showed a good discriminatory ability (AUC, 0.758 [95% confidence interval (CI), 0.708-0.808] and a well-performed calibration curve (Hosmer-Lemeshow χ = 7.549, = 0.479), which upheld in the 10-fold cross-validation (AUC, 0.742 [95% CI, 0.718-0.767]. This model also demonstrated an improved performance in comparison to the modified Revised Cardiac Risk Index (RCRI) score (increase in AUC by 0.119 [95% CI, 0.056-0.180]; NRI, 0.445 [95% CI, 0.237-0.653]; IDI, 0.133 [95% CI, 0.087-0.178]. The decision curve analysis showed a positive net benefit of our new model.
Our nomogram, which relies upon simple clinical characteristics and laboratory tests, is able to predict MACCEs in patients undergoing major noncardiac surgery. This prediction shows better discrimination than the standardized modified RCRI score, laying a promising foundation for further large-scale validation.
在非心脏大手术前,几乎没有基于证据的预测工具可用于评估主要的心脑血管不良事件(MACCE)。我们试图开发一种新的简单而有效的工具来评估手术风险。
采用巢式病例对照研究设计,我们从北京朝阳医院接受非心脏大手术的10507例患者中,招募了105例住院期间发生MACCE的患者和481例未发生MACCE的患者。应用最小绝对收缩和选择算子(LASSO)回归及似然比筛选401个潜在特征用于逻辑回归。使用选定变量构建列线图。
在所有因素中,慢性心力衰竭、心脏瓣膜病、术前血清肌酐>2.0mg/dL、美国麻醉医师协会(ASA)分级、中性粒细胞计数和年龄与住院期间MACCE的相关性最强。基于这些因素建立的新预测模型具有良好的辨别能力(曲线下面积[AUC],0.758[95%置信区间(CI),0.708 - 0.808])和良好的校准曲线(Hosmer-Lemeshow χ² = 7.549,P = 0.479),在10倍交叉验证中得到验证(AUC,0.742[95%CI,0.718 - 0.767])。与改良的修订心脏风险指数(RCRI)评分相比,该模型的性能也有所提高(AUC增加0.119[95%CI,0.056 - 0.180];净重新分类指数[NRI],0.445[95%CI,0.237 - 0.653];综合判别改善指数[IDI],0.133[95%CI,0.087 - 0.178])。决策曲线分析显示我们的新模型具有正的净效益。
我们的列线图依赖于简单的临床特征和实验室检查,能够预测非心脏大手术患者的MACCE。该预测比标准化的改良RCRI评分具有更好 discrimination,为进一步大规模验证奠定了良好基础。