Suppr超能文献

采用参数方法对婴儿死亡率进行风险评估的复杂生存系统建模。

Complex Survival System Modeling for Risk Assessment of Infant Mortality Using a Parametric Approach.

机构信息

Department of Electronics and Information, Xi'an Jiaotong University, Shaanxi 710049, China.

Department of Statistics, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan.

出版信息

Comput Math Methods Med. 2022 Apr 19;2022:7745628. doi: 10.1155/2022/7745628. eCollection 2022.

Abstract

Pakistan is still one of the five countries contributing to half of the child deaths worldwide and holds a low ratio of infant survival. A high rate of poverty, low level of education, limited health facilities, rural-urban inequalities, and political uncertainty are the main reasons for this condition. Survival models that evaluate the performance of models over simulated and real data set may serve as an effective technique to determine accurate complex systems. The present study proposed an efficient extension of the recent parametric technique for risk assessment of infant mortality to address complex survival systems in the presence of extreme observations. This extended method integrated four distributions with the basic algorithm using a real data set of infant survival without extreme observations. The proposed models are compared with the standard partial least squares-Cox regression (PLS-CoxR), and higher efficiency of these proposed algorithms is observed for handling complex survival time systems for risk assessment. The algorithm is also used to analyze simulated data set for further verification of results. The optimal model revealed that the mother's age, type of residence, wealth index, permission to go to a medical facility, distance to a health facility, and awareness about tuberculosis significantly affected the survival time of infants. The flexibility and continuity of extended parametric methods support the implementation of public health surveillance data effectively for data-oriented evaluation. The findings may support projecting targeted interventions, producing awareness, and implementing policies planned to reduce infant mortality.

摘要

巴基斯坦仍然是导致全球一半儿童死亡的五个国家之一,婴儿存活率也很低。贫困率高、教育水平低、卫生设施有限、城乡不平等以及政治不稳定是造成这种状况的主要原因。评估模型在模拟和真实数据集上的表现的生存模型可以作为确定准确复杂系统的有效技术。本研究提出了一种有效的扩展,即将最近的婴儿死亡率风险评估参数技术扩展到存在极端观测值的复杂生存系统中。该扩展方法使用基本算法将四个分布与没有极端观测值的婴儿生存的真实数据集集成在一起。将提出的模型与标准偏最小二乘- Cox 回归(PLS-CoxR)进行比较,发现这些提出的算法在处理复杂生存时间系统的风险评估方面具有更高的效率。该算法还用于分析模拟数据集以进一步验证结果。最优模型表明,母亲的年龄、居住类型、财富指数、去医疗机构的许可、到医疗机构的距离和对结核病的认识显著影响婴儿的生存时间。扩展参数方法的灵活性和连续性支持有效实施公共卫生监测数据,以便进行面向数据的评估。这些发现可能有助于规划有针对性的干预措施,提高认识,并实施旨在降低婴儿死亡率的政策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/969b/9042624/97c901dae400/CMMM2022-7745628.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验