Sažinas Rokas, Andersen Suzanne Zamany, Li Katja, Saccoccio Mattia, Krempl Kevin, Pedersen Jakob Bruun, Kibsgaard Jakob, Vesborg Peter Christian Kjærgaard, Chakraborty Debasish, Chorkendorff Ib
Department of Physics, Technical University of Denmark Kongens Lyngby 2800 Denmark
RSC Adv. 2021 Sep 23;11(50):31487-31498. doi: 10.1039/d1ra05963g. eCollection 2021 Sep 21.
Lithium-mediated electrochemical ammonia synthesis (LiMEAS) in non-aqueous media is a promising technique for efficient and green ammonia synthesis. Compared to the widely used Haber-Bosch process, the method reduces CO emissions to zero due to the application of green hydrogen. However, the non-aqueous medium encounters the alkali metal lithium and organic components at high negative potentials of electrolysis, which leads to formation of byproducts. To assess the environmental risk of this synthesis method, standardized analytical methods towards understanding of the degradation level and consequences are needed. Here we report on the implementation of an approach to analyze the liquid electrolytes after electrochemical ammonia synthesis high-resolution gas chromatography-mass spectrometry (GCMS). To characterize the molecular species formed after electrolysis, electron ionization high-resolution mass spectrometry (EI-MS) was applied. The fragmentation patterns enabled the elucidation of the mechanisms of byproduct formation. Several organic electrolytes were analyzed and compared both qualitatively and quantitatively to ascertain molecular composition and degradation products. It was found that the organic solvent in contact with metallic electrodeposited lithium induces solvent degradation, and the extent of this decomposition to different organic molecules depends on the organic solvent used. Our results show GCMS as a suitable technique for monitoring non-aqueous electrochemical ammonia synthesis in different organic electrolytes.
非水介质中锂介导的电化学氨合成(LiMEAS)是一种高效绿色氨合成的有前景的技术。与广泛使用的哈伯-博施法相比,该方法由于使用绿色氢气,将二氧化碳排放量降至零。然而,非水介质在高负电解电位下会遇到碱金属锂和有机成分,这会导致副产物的形成。为了评估这种合成方法的环境风险,需要用于了解降解水平和后果的标准化分析方法。在此,我们报告了一种在电化学氨合成后分析液体电解质的方法——高分辨率气相色谱-质谱联用仪(GCMS)的应用。为了表征电解后形成的分子种类,应用了电子电离高分辨率质谱(EI-MS)。碎片模式有助于阐明副产物形成的机制。对几种有机电解质进行了定性和定量分析与比较,以确定分子组成和降解产物。结果发现,与金属沉积锂接触的有机溶剂会导致溶剂降解,这种分解为不同有机分子的程度取决于所使用的有机溶剂。我们的结果表明,GCMS是监测不同有机电解质中非水电化学氨合成的合适技术。