Wang Fa-Guo, Wang Ai-Hua, Bai Cheng-Ke, Jin Dong-Mei, Nie Li-Yun, Harris A J, Che Le, Wang Juan-Juan, Li Shi-Yu, Xu Lei, Shen Hui, Gu Yu-Feng, Shang Hui, Duan Lei, Zhang Xian-Chun, Chen Hong-Feng, Yan Yue-Hong
Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, 530001, China.
Plant Divers. 2022 Jan 1;44(2):141-152. doi: 10.1016/j.pld.2021.11.007. eCollection 2022 Mar.
Ferns and lycophytes have remarkably large genomes. However, little is known about how their genome size evolved in fern lineages. To explore the origins and evolution of chromosome numbers and genome size in ferns, we used flow cytometry to measure the genomes of 240 species (255 samples) of extant ferns and lycophytes comprising 27 families and 72 genera, of which 228 species (242 samples) represent new reports. We analyzed correlations among genome size, spore size, chromosomal features, phylogeny, and habitat type preference within a phylogenetic framework. We also applied ANOVA and multinomial logistic regression analysis to preference of habitat type and genome size. Using the phylogeny, we conducted ancestral character reconstruction for habitat types and tested whether genome size changes simultaneously with shifts in habitat preference. We found that 2C values had weak phylogenetic signal, whereas the base number of chromosomes () had a strong phylogenetic signal. Furthermore, our analyses revealed a positive correlation between genome size and chromosome traits, indicating that the base number of chromosomes (), chromosome size, and polyploidization may be primary contributors to genome expansion in ferns and lycophytes. Genome sizes in different habitat types varied significantly and were significantly correlated with habitat types; specifically, multinomial logistic regression indicated that species with larger 2C values were more likely to be epiphytes. Terrestrial habitat is inferred to be ancestral for both extant ferns and lycophytes, whereas transitions to other habitat types occurred as the major clades emerged. Shifts in habitat types appear be followed by periods of genomic stability. Based on these results, we inferred that habitat type changes and multiple whole-genome duplications have contributed to the formation of large genomes of ferns and their allies during their evolutionary history.
蕨类植物和石松类植物拥有非常大的基因组。然而,关于它们的基因组大小在蕨类植物谱系中是如何进化的,我们知之甚少。为了探究蕨类植物染色体数目和基因组大小的起源与进化,我们使用流式细胞术测量了现存蕨类植物和石松类植物240个物种(255个样本)的基因组,这些物种涵盖27个科和72个属,其中228个物种(242个样本)代表新的报道。我们在系统发育框架内分析了基因组大小、孢子大小、染色体特征、系统发育和栖息地类型偏好之间的相关性。我们还对栖息地类型偏好和基因组大小应用了方差分析和多项逻辑回归分析。利用系统发育,我们对栖息地类型进行了祖先性状重建,并测试了基因组大小是否与栖息地偏好的转变同时发生变化。我们发现2C值的系统发育信号较弱,而染色体基数()具有较强的系统发育信号。此外,我们的分析揭示了基因组大小与染色体特征之间存在正相关,这表明染色体基数()、染色体大小和多倍体化可能是蕨类植物和石松类植物基因组扩张的主要因素。不同栖息地类型的基因组大小差异显著,并且与栖息地类型显著相关;具体而言,多项逻辑回归表明,2C值较大的物种更有可能是附生植物。现存的蕨类植物和石松类植物的陆地栖息地被推断为祖先栖息地,而随着主要分支的出现,向其他栖息地类型的转变发生了。栖息地类型的转变之后似乎是基因组稳定期。基于这些结果,我们推断栖息地类型变化和多次全基因组复制在蕨类植物及其近缘植物的进化历史中促成了其大基因组的形成。