Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus Building E 8.1, 66123, Saarbrücken, Germany.
Department of Pharmacy, Saarland University, Campus Building E8.1, 66123, Saarbrücken, Germany.
Sci Rep. 2022 May 4;12(1):7221. doi: 10.1038/s41598-022-11205-9.
The development of drug resistance by Mycobacterium tuberculosis and other pathogenic bacteria emphasizes the need for new antibiotics. Unlike animals, most bacteria synthesize isoprenoid precursors through the MEP pathway. 1-Deoxy-D-xylulose 5-phosphate synthase (DXPS) catalyzes the first reaction of the MEP pathway and is an attractive target for the development of new antibiotics. We report here the successful use of a loop truncation to crystallize and solve the first DXPS structures of a pathogen, namely M. tuberculosis (MtDXPS). The main difference found to other DXPS structures is in the active site where a highly coordinated water was found, showing a new mechanism for the enamine-intermediate stabilization. Unlike other DXPS structures, a "fork-like" motif could be identified in the enamine structure, using a different residue for the interaction with the cofactor, potentially leading to a decrease in the stability of the intermediate. In addition, electron density suggesting a phosphate group could be found close to the active site, provides new evidence for the D-GAP binding site. These results provide the opportunity to improve or develop new inhibitors specific for MtDXPS through structure-based drug design.
结核分枝杆菌和其他病原菌耐药性的发展强调了开发新抗生素的必要性。与动物不同,大多数细菌通过 MEP 途径合成异戊烯前体。1-脱氧-D-木酮糖 5-磷酸合酶(DXPS)催化 MEP 途径的第一个反应,是开发新抗生素的有吸引力的靶标。我们在此报告了使用环截断成功结晶并解决第一个病原体 DXPS 结构的情况,即结核分枝杆菌(MtDXPS)。与其他 DXPS 结构相比,在活性部位发现了一个高度协调的水分子,这为烯胺中间体的稳定提供了一种新的机制。与其他 DXPS 结构不同,在烯胺结构中可以识别出“叉状”基序,使用不同的残基与辅因子相互作用,可能导致中间体稳定性降低。此外,在活性部位附近可以找到电子密度表明存在磷酸基团,为 D-GAP 结合位点提供了新的证据。这些结果为通过基于结构的药物设计来改善或开发针对 MtDXPS 的新型抑制剂提供了机会。