Suppr超能文献

使用电子病历诊断编码来识别患有创伤后应激障碍的退伍军人。

Using electronic medical record diagnostic codes to identify veterans with posttraumatic stress disorder.

作者信息

Moshier Samantha J, Harper Kelly, Keane Terence M, Marx Brian P

机构信息

Department of Psychology and Neuroscience, Emmanuel College, Boston, Massachusetts, USA.

National Center for PTSD at VA Boston Healthcare System, Boston, Massachusetts, USA.

出版信息

J Trauma Stress. 2022 Oct;35(5):1445-1459. doi: 10.1002/jts.22844. Epub 2022 May 5.

Abstract

Researchers studying posttraumatic stress disorder (PTSD) often use diagnostic codes within electronic medical records (EMRs) to identify individuals with the disorder. This study evaluated the performance of algorithms for defining PTSD based on International Classification of Diseases (ICD) code use within EMR data. We used data from a registry of U.S. veterans for whom both structured interview data and Veterans Health Administration EMR data were available. Using interview-diagnosed PTSD as the reference criterion, we calculated diagnostic accuracy statistics for algorithms that required the presence of at least one and up to seven encounters in which a PTSD diagnosis was present in EMR data within any clinical source, mental health clinic, or specialty PTSD clinic. We evaluated algorithm accuracy in the total sample (N = 1,343; 64.1% with PTSD), within a subsample constrained to lower PTSD prevalence (n = 712; 32.3% with PTSD), and as a function of demographic characteristics. Algorithm accuracy was influenced by PTSD prevalence. Results indicated that higher thresholds for the operationalization of PTSD may be justified among samples in which PTSD prevalence is lower. Requiring three PTSD diagnoses from a mental health clinic or four diagnoses from any clinical source may be a suitable minimum standard for identifying individuals with PTSD in EMRs; however, accuracy may be optimized by requiring additional diagnoses. The performance of many algorithms differed as a function of educational attainment and age, suggesting that samples of individuals with PTSD developed based on EMR ICD codes may skew toward including older, less-educated veterans.

摘要

研究创伤后应激障碍(PTSD)的研究人员通常会使用电子病历(EMR)中的诊断代码来识别患有该障碍的个体。本研究评估了基于EMR数据中疾病国际分类(ICD)代码使用情况来定义PTSD的算法的性能。我们使用了来自美国退伍军人登记处的数据,这些退伍军人同时拥有结构化访谈数据和退伍军人健康管理局的EMR数据。以访谈诊断的PTSD作为参考标准,我们计算了算法的诊断准确性统计数据,这些算法要求在任何临床来源、心理健康诊所或专科PTSD诊所的EMR数据中,至少出现一次至多达七次存在PTSD诊断的情况。我们在总样本(N = 1,343;64.1%患有PTSD)、PTSD患病率较低的子样本(n = 712;32.3%患有PTSD)以及作为人口统计学特征的函数中评估了算法准确性。算法准确性受PTSD患病率影响。结果表明,在PTSD患病率较低的样本中,对PTSD操作化设定更高的阈值可能是合理的。要求心理健康诊所给出三次PTSD诊断或任何临床来源给出四次诊断,可能是在EMR中识别患有PTSD个体的合适最低标准;然而,通过要求额外的诊断可能会优化准确性。许多算法的性能因教育程度和年龄而异,这表明基于EMR ICD代码开发的患有PTSD个体的样本可能倾向于纳入年龄较大、受教育程度较低的退伍军人。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验