Xu Yijie, Sumboja Afriyanti, Groves Alexandra, Ashton Thomas, Zong Yun, Darr Jawwad A
Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
Institute of Materials Research and Engineering (IMRE), ASTAR (Agency for Science, Technology and Research) 2 Fusionopolis Way, Innovis #08-03 138634 Singapore
RSC Adv. 2020 Nov 17;10(68):41871-41882. doi: 10.1039/d0ra08363a. eCollection 2020 Nov 11.
Developing large-scale and high-performance OER (oxygen evolution reaction) and ORR (oxygen reduction reaction) catalysts have been a challenge for commercializing secondary zinc-air batteries. In this work, transition metal-doped cobalt-nickel sulfide spinels are directly produced a continuous hydrothermal flow synthesis (CHFS) approach. The nanosized cobalt-nickel sulfides are doped with Ag, Fe, Mn, Cr, V, and Ti and evaluated as bifunctional OER and ORR catalyst for Zn-air battery application. Among the doped spinel catalysts, Mn-doped cobalt-nickel sulfides (NiCoMnS) exhibit the most promising OER and ORR performance, showing an ORR onset potential of 0.9 V RHE and an OER overpotential of 348 mV measured at 10 mA cm, which is attributed to their high surface area, electronic structure of the dopant species, and the synergistic coupling of the dopant species with the active host cations. The dopant ions primarily alter the host cation composition, with the Mn(iii) cation linked to the introduction of active sites by its favourable electronic structure. A power density of 75 mW cm is achieved at a current density of 140 mA cm for the zinc-air battery using the manganese-doped catalyst, a 12% improvement over the undoped cobalt-nickel sulfide and superior to that of the battery with a commercial RuO catalyst.
开发大规模、高性能的析氧反应(OER)和氧还原反应(ORR)催化剂一直是二次锌空气电池商业化面临的挑战。在这项工作中,通过连续水热流动合成(CHFS)方法直接制备了过渡金属掺杂的钴镍硫化物尖晶石。纳米级钴镍硫化物掺杂有银、铁、锰、铬、钒和钛,并被评估为用于锌空气电池的双功能OER和ORR催化剂。在掺杂的尖晶石催化剂中,锰掺杂的钴镍硫化物(NiCoMnS)表现出最有前景的OER和ORR性能,在10 mA cm下测量的ORR起始电位为0.9 V(相对于可逆氢电极,RHE),OER过电位为348 mV,这归因于它们的高表面积、掺杂物种的电子结构以及掺杂物种与活性主体阳离子的协同耦合。掺杂离子主要改变主体阳离子组成,Mn(iii)阳离子因其有利的电子结构与活性位点的引入有关。使用锰掺杂催化剂的锌空气电池在140 mA cm的电流密度下实现了75 mW cm的功率密度,比未掺杂的钴镍硫化物提高了12%,并且优于使用商业RuO催化剂的电池。