Suppr超能文献

使用聚(L-半胱氨酸)功能化的CuO纳米针/N掺杂还原氧化石墨烯的电化学传感器用于检测铅离子。

Electrochemical sensor using poly-(l-cysteine) functionalized CuO nanoneedles/N-doped reduced graphene oxide for detection of lead ions.

作者信息

Yang Suling, Liu Panpan, Wang Yuxin, Guo Ziling, Tan Ruifan, Qu Lingbo

机构信息

College of Chemistry and Chemical Engineering, Anyang Normal University Anyang 455002 PR China

Henan Key Laboratory of New Opto-electronic Functional Materials China.

出版信息

RSC Adv. 2020 May 14;10(31):18526-18532. doi: 10.1039/d0ra03149f. eCollection 2020 May 10.

Abstract

A highly sensitive and selective electrochemical sensor modified with poly-(l-cysteine)/CuO nanoneedles/N-doped reduced graphene oxide (l-Cys/NN-CuO/N-rGO) has been prepared for the testing of trace Pb. The electrochemical performance of this proposed sensor was investigated using electrochemical impedance spectroscopy (EIS). Based on the excellent electrochemical properties of NN-CuO/N-rGO as well as the specific complexation of natural substance l-cysteine with Pb, the l-Cys/NN-CuO/N-rGO was applied as a voltammetric biosensor for the determination of trace Pb at pH 5.0. Under the optimum experimental conditions, the voltammetric peak current was linear with the Pb concentration over the range from 0.001 to 5.0 nM and 5.0 to 1000 nM, respectively, with a low detection limit for Pb concentration on the biosensor of 8.0 × 10 nM (S/N = 3). The significant sensitivity, selectivity, and electron conductivity of this l-Cys/NN-CuO/N-rGO modified electrode have also been studied. The specific detection of Pb in water samples was also carried out.

摘要

一种用聚(L-半胱氨酸)/氧化铜纳米针/氮掺杂还原氧化石墨烯(L-Cys/NN-CuO/N-rGO)修饰的高灵敏度和选择性电化学传感器已被制备用于痕量铅的检测。使用电化学阻抗谱(EIS)研究了该传感器的电化学性能。基于NN-CuO/N-rGO优异的电化学性质以及天然物质L-半胱氨酸与铅的特异性络合,L-Cys/NN-CuO/N-rGO被用作伏安生物传感器在pH 5.0下测定痕量铅。在最佳实验条件下,伏安峰电流分别在0.001至5.0 nM和5.0至1000 nM范围内与铅浓度呈线性关系,该生物传感器对铅浓度的检测限低至8.0×10 nM(信噪比=3)。还研究了这种L-Cys/NN-CuO/N-rGO修饰电极的显著灵敏度、选择性和电子导电性。还对水样中的铅进行了特异性检测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验