Suppr超能文献

嵌入氮掺杂绣球状碳中的氧化钼纳米颗粒作为高性能锂硫电池的硫宿主

MoO nanoparticles embedded in N-doped hydrangea-like carbon as a sulfur host for high-performance lithium-sulfur batteries.

作者信息

Wang Yasai, Feng Guilin, Wang Yang, Wu Zhenguo, Chen Yanxiao, Guo Xiaodong, Zhong Benhe

机构信息

School of Chemical Engineering, Sichuan University Chengdu 610065 China

RIES, Hokkaido University N20W10, Kita-Ward Sapporo 001-0020 Japan.

出版信息

RSC Adv. 2020 May 27;10(34):20173-20183. doi: 10.1039/d0ra02102d. eCollection 2020 May 26.

Abstract

Lithium-sulfur batteries are considered to be promising energy storage devices owing to their high energy density, relatively low price and abundant resources. However, the low utilization of insulated active materials and shuttle effect have severely hindered the further development of lithium-sulfur batteries. Herein, MoO nanoparticles embedded in N-doped hydrangea-like carbon have been synthesized by liquid-phase reaction followed by an annealing process and used as a sulfur host. The nitrogen-doped carbon matrix improves electrical conductivity and provides pathways for smooth electron and Li ion transfer to uniformly dispersed sulfur. Meanwhile, MoO nanoparticles can absorb polysulfide ions by forming strong chemical bonds, which can effectively alleviate the polysulfide shuttling effect. These results showed a good rate performance: 1361, 1071, 925, 815 and 782 mA h g at the current densities of 0.1, 0.2, 0.5, 1 and 2 A g, and capacity retention of 85% after 300 cycles at 1 A g. The excellent performance was due to the synergistic effects of the polar MoO and nitrogen-doped carbon matrix, which can effectively restrain and reutilize active materials by absorbing polysulfides and catalyzing the transformation of polysulfides.

摘要

锂硫电池因其高能量密度、相对较低的价格和丰富的资源而被认为是很有前景的储能装置。然而,绝缘活性材料的低利用率和穿梭效应严重阻碍了锂硫电池的进一步发展。在此,通过液相反应随后进行退火工艺合成了嵌入氮掺杂绣球状碳中的MoO纳米颗粒,并将其用作硫宿主。氮掺杂碳基体提高了电导率,并为电子和锂离子均匀转移到分散的硫提供了通道。同时,MoO纳米颗粒可以通过形成强化学键吸收多硫化物离子,这可以有效缓解多硫化物穿梭效应。这些结果显示出良好的倍率性能:在电流密度为0.1、0.2、0.5、1和2 A g时分别为1361、1071、925、815和782 mA h g,在1 A g下循环300次后容量保持率为85%。优异的性能归因于极性MoO和氮掺杂碳基体的协同效应,它们可以通过吸收多硫化物和催化多硫化物的转化来有效抑制和再利用活性材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b75a/9054241/28758d290df6/d0ra02102d-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验