Li Haoze, Sun Bojing, Yang Fan, Wang Zhen, Xu Yachao, Tian Guohui, Pan Kai, Jiang Baojiang, Zhou Wei
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University Harbin 150080 P. R. China
RSC Adv. 2019 Mar 8;9(14):7870-7877. doi: 10.1039/c9ra00633h. eCollection 2019 Mar 6.
The photocatalytic hydrogen evolution of TiO is deemed to be one of the most promising ways of converting solar energy to chemical energy; however, it is a challenge to improve the photo-generated charge separation efficiency and enhance solar utilization. Herein, black mesoporous rutile/anatase TiO microspheres with a homojunction and surface defects have been successfully synthesized by an evaporation-induced self-assembly, solvothermal and high-temperature surface hydrogenation method. The H500-BMR/ATM (H-BMR/ATM, where means the different hydrogen calcination temperatures) materials not only possess a mesoporous structure and relatively high specific surface area of 39.2 m g, but also have a narrow bandgap (∼2.87 eV), which could extend the photoresponse to the visible light region. They exhibit high photocatalytic hydrogen production (6.4 mmol h g), which is much higher (approximately 1.8 times) than that of pristine mesoporous rutile/anatase TiO microspheres (3.58 mmol h g). This enhanced photocatalytic hydrogen production property is attributed to the synergistic effect of the homojunction and surface defects in improving efficient electron-hole separation and high utilization of solar light. This work proposes a new approach to improve the performance of photocatalytic hydrogen production and probably offers a new insight into fabricating other high-performance photocatalysts.
二氧化钛的光催化析氢被认为是将太阳能转化为化学能最具前景的方法之一;然而,提高光生电荷分离效率并增强太阳能利用是一项挑战。在此,通过蒸发诱导自组装、溶剂热和高温表面氢化法成功合成了具有同质结和表面缺陷的黑色介孔金红石/锐钛矿型二氧化钛微球。H500 - BMR/ATM(H - BMR/ATM,其中表示不同的氢气煅烧温度)材料不仅具有介孔结构和相对较高的比表面积39.2 m²/g,而且具有较窄的带隙(约2.87 eV),这可以将光响应扩展到可见光区域。它们表现出高光催化产氢量(6.4 mmol h⁻¹ g⁻¹),比原始介孔金红石/锐钛矿型二氧化钛微球(3.58 mmol h⁻¹ g⁻¹)高得多(约1.8倍)。这种增强的光催化产氢性能归因于同质结和表面缺陷在改善有效电子 - 空穴分离和高效利用太阳光方面的协同作用。这项工作提出了一种提高光催化产氢性能的新方法,并可能为制备其他高性能光催化剂提供新的见解。