Dewar Sean, Kitson Derek, Nixon Anthony
Johann Radon Institute of Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Linz, Austria.
Department of Mathematics and Statistics, Lancaster University, Lancaster, LA1 4YF UK.
J Glob Optim. 2022;83(1):49-71. doi: 10.1007/s10898-021-01008-z. Epub 2021 Mar 13.
We present three results which support the conjecture that a graph is minimally rigid in -dimensional -space, where and , if and only if it is (, )-tight. Firstly, we introduce a graph bracing operation which preserves independence in the generic rigidity matroid when passing from to . We then prove that every (, )-sparse graph with minimum degree at most and maximum degree at most is independent in . Finally, we prove that every triangulation of the projective plane is minimally rigid in . A catalogue of rigidity preserving graph moves is also provided for the more general class of strictly convex and smooth normed spaces and we show that every triangulation of the sphere is independent for 3-dimensional spaces in this class.
我们给出了三个结果,它们支持这样一个猜想:对于一个图,当且仅当它是((n, d))-紧的时,它在(d)维(n)空间中是极小刚性的,其中(n\geq d\geq 2)。首先,我们引入一种图支撑操作,当从(n)过渡到(n + 1)时,该操作在一般刚性拟阵中保持独立性。然后我们证明,每个最小度至多为(d)且最大度至多为(n)的((n, d))-稀疏图在(n)中是独立的。最后,我们证明射影平面的每个三角剖分在(3)中是极小刚性的。对于更一般的严格凸和平滑赋范空间类,还提供了一个保持刚性的图移动目录,并且我们表明在这类空间中,对于三维空间,球面的每个三角剖分都是独立的。