Suppr超能文献

用于水环境中光催化降解环丙沙星的最佳NaYF:Yb,Tm@TiO核壳结构

NaYF:Yb,Tm@TiO core@shell structures for optimal photocatalytic degradation of ciprofloxacin in the aquatic environment.

作者信息

Ma Yongmei, Li Siyue

机构信息

Research Center for Ecohydrology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences Chongqing 400714 China

出版信息

RSC Adv. 2019 Oct 18;9(57):33519-33524. doi: 10.1039/c9ra08145c. eCollection 2019 Oct 15.

Abstract

The removal of antibiotic residues in the aquatic environment is still a big challenge in environmental protection. Here, we developed NaYF:Yb,Tm@TiO as a highly efficient photocatalyst for photocatalytic degradation of ciprofloxacin (CIP), a representative antibiotic in water under simulated solar irradiation. NaYF:Yb,Tm@TiO can efficiently utilize a broad spectrum of solar energy to improve the efficiency of ciprofloxacin removal from an aquatic environment. The optimum operation conditions of photocatalyst dosage, pH value, and initial concentrations of CIP were determined by a series of contrast experiments. The dynamic process of CIP removal was monitored by UV-vis spectrophotometry, and can be well predicted by a pseudo first order model. The optimal conditions of photocatalyst dosage, initial concentration of CIP and pH value for CIP photocatalytic degradation were 1 g L, 10 M and 8, respectively. This study provides an efficient method for antibiotic removal and enables a promising strategy for other organic water pollutant treatments.

摘要

去除水环境中的抗生素残留仍然是环境保护中的一项重大挑战。在此,我们开发了NaYF:Yb,Tm@TiO作为一种高效光催化剂,用于在模拟太阳辐射下光催化降解水中具有代表性的抗生素环丙沙星(CIP)。NaYF:Yb,Tm@TiO能够有效利用广谱太阳能,提高从水环境中去除环丙沙星的效率。通过一系列对比实验确定了光催化剂用量、pH值和CIP初始浓度的最佳操作条件。采用紫外-可见分光光度法监测CIP去除的动态过程,并用伪一级模型进行了很好的预测。CIP光催化降解的光催化剂用量、CIP初始浓度和pH值的最佳条件分别为1 g L、10 μM和8。本研究为抗生素去除提供了一种有效方法,并为其他有机水污染物处理提供了一种有前景的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f36c/9073336/3aa49c2d6ed8/c9ra08145c-f1.jpg

相似文献

1
NaYF:Yb,Tm@TiO core@shell structures for optimal photocatalytic degradation of ciprofloxacin in the aquatic environment.
RSC Adv. 2019 Oct 18;9(57):33519-33524. doi: 10.1039/c9ra08145c. eCollection 2019 Oct 15.
2
Highly efficient photocatalytic oxidation of antibiotic ciprofloxacin using TiO@g-CN@biochar composite.
Environ Sci Pollut Res Int. 2022 Jul;29(32):48522-48538. doi: 10.1007/s11356-022-19269-w. Epub 2022 Feb 22.
4
High Photocatalytic Activity of g-CN/La-N-TiO Composite with Nanoscale Heterojunctions for Degradation of Ciprofloxacin.
Int J Environ Res Public Health. 2022 Apr 15;19(8):4793. doi: 10.3390/ijerph19084793.
5
Sono-assisted photocatalytic degradation of ciprofloxacin in aquatic media using g-CN/MOF-based nanocomposite under visible light irradiation.
Environ Sci Pollut Res Int. 2024 May;31(24):35811-35823. doi: 10.1007/s11356-024-33222-z. Epub 2024 May 14.
6
Core-shell structured NaYF:Yb,Tm@CdS composite for enhanced photocatalytic properties.
RSC Adv. 2018 Oct 15;8(61):35306-35313. doi: 10.1039/c8ra06800c. eCollection 2018 Oct 10.
8
Near-infrared light-driven photocatalytic NaYF:Yb,Tm@ZnO core/shell nanomaterials and their performance.
RSC Adv. 2019 Jan 28;9(7):3688-3692. doi: 10.1039/c8ra07861k. eCollection 2019 Jan 25.
9
Toward NIR driven photocatalyst: Fabrication, characterization, and photocatalytic activity of β-NaYF4:Yb(3+),Tm(3+)/g-C3N4 nanocomposite.
J Colloid Interface Sci. 2015 Dec 15;460:264-72. doi: 10.1016/j.jcis.2015.08.063. Epub 2015 Aug 28.
10
Enhanced near-infrared photocatalysis of NaYF4:Yb, Tm/CdS/TiO2 composites.
Dalton Trans. 2014 Jan 21;43(3):1048-54. doi: 10.1039/c3dt52288a. Epub 2013 Oct 28.

本文引用的文献

1
Magnetite-Supported Gold Nanostars for the Uptake and SERS Detection of Tetracycline.
Nanomaterials (Basel). 2018 Dec 27;9(1):31. doi: 10.3390/nano9010031.
2
Removal of ciprofloxacin from aqueous solutions by ionic surfactant-modified carbon nanotubes.
Environ Pollut. 2018 Dec;243(Pt A):206-217. doi: 10.1016/j.envpol.2018.08.059. Epub 2018 Aug 24.
4
Activated carbon adsorption of quinolone antibiotics in water: Performance, mechanism, and modeling.
J Environ Sci (China). 2017 Jun;56:145-152. doi: 10.1016/j.jes.2016.09.010. Epub 2016 Oct 26.
6
Sulfate radical-based oxidation of fluoroquinolone antibiotics: Kinetics, mechanisms and effects of natural water matrices.
Water Res. 2016 Dec 1;106:507-517. doi: 10.1016/j.watres.2016.10.025. Epub 2016 Oct 12.
7
Removal of decabromodiphenyl ether (BDE-209) using a combined system involving TiO photocatalysis and wetland plants.
J Hazard Mater. 2017 Jan 15;322(Pt A):263-269. doi: 10.1016/j.jhazmat.2016.05.097. Epub 2016 Jun 1.
8
Upconversion luminescent materials: advances and applications.
Chem Rev. 2015 Jan 14;115(1):395-465. doi: 10.1021/cr400478f. Epub 2014 Dec 10.
10
Adsorption of antibiotic ciprofloxacin on carbon nanotubes: pH dependence and thermodynamics.
Chemosphere. 2014 Jan;95:150-5. doi: 10.1016/j.chemosphere.2013.08.053. Epub 2013 Oct 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验