Suppr超能文献

在混响室中对不同拉伸程度下的柔性可穿戴天线进行效率测量。

Efficiency measurement of the flexible on-body antenna at varying levels of stretch in a reverberation chamber.

作者信息

Tajin Md Abu Saleh, Bshara Oday, Liu Yuqiao, Levitt Ariana, Dion Genevieve, Dandekar Kapil R

机构信息

Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA 19104, USA.

Materials Science and Engineering Department, Drexel University, Philadelphia, PA 19104, USA.

出版信息

IET Microw Antennas Propag. 2020 Feb;14(3):154-158. doi: 10.1049/iet-map.2019.0503. Epub 2019 Dec 11.

Abstract

Flexible antennas have the potential to transform wearable and fabric-based wireless sensing technologies. The antenna discussed in this study is part of a sensing system that uses the back-scattered power level as the decision metric. For a good wireless sensor, it is necessary to offer a feasible read range and maintain good distinctions in the back-scattered power levels between the different states (i.e. level of stretch) of the antenna. Moreover, effects due to human body proximity should be minimised. For these reasons, the radiation efficiency is a crucial parameter to investigate. This study presents the radiation efficiency measurement of the proposed flexible knitted 'Bellyband' antenna at two different levels of stretch in a reverberation chamber. This work validates the reverberation chamber measurements through comparison with simulations and anechoic chamber measurements at 900 MHz. Moreover, this work demonstrates how the approach can be used to quantify bellyband antenna efficiency in the vicinity of a human body. Finally, the efficiency results were used to predict the read range of Bellyband radio frequency identification technology.

摘要

柔性天线有潜力变革可穿戴和基于织物的无线传感技术。本研究中讨论的天线是一个传感系统的一部分,该系统使用反向散射功率电平作为决策指标。对于一个良好的无线传感器而言,有必要提供一个可行的读取范围,并在天线的不同状态(即拉伸程度)之间的反向散射功率电平上保持良好的区分度。此外,应尽量减少人体靠近带来的影响。出于这些原因,辐射效率是一个关键的研究参数。本研究展示了在混响室内对所提出的柔性针织“腹带”天线在两种不同拉伸程度下的辐射效率测量。这项工作通过与900 MHz下的模拟和电波暗室测量结果进行比较,验证了混响室测量结果。此外,这项工作还展示了该方法如何用于量化人体附近腹带天线的效率。最后,利用效率结果预测了腹带射频识别技术的读取范围。

相似文献

1
Efficiency measurement of the flexible on-body antenna at varying levels of stretch in a reverberation chamber.
IET Microw Antennas Propag. 2020 Feb;14(3):154-158. doi: 10.1049/iet-map.2019.0503. Epub 2019 Dec 11.
2
Passive UHF RFID-based Knitted Wearable Compression Sensor.
IEEE Internet Things J. 2021 Sep 1;8(17):13763-13773. doi: 10.1109/jiot.2021.3068198. Epub 2021 Mar 23.
3
Uncertainty in Reverberation-Chamber Antenna-Efficiency Measurements in the Presence of a Phantom.
IEEE Trans Antennas Propag. 2020;68(6). doi: 10.1109/tap.2020.2969883.
5
A Wearable Button Antenna Sensor for Dual-Mode Wireless Information and Power Transfer.
Sensors (Basel). 2021 Aug 24;21(17):5678. doi: 10.3390/s21175678.
7
Flexible Wearable Composite Antennas for Global Wireless Communication Systems.
Sensors (Basel). 2021 Sep 10;21(18):6083. doi: 10.3390/s21186083.
8
A Flexible Metamaterial Based Printed Antenna for Wearable Biomedical Applications.
Sensors (Basel). 2021 Nov 29;21(23):7960. doi: 10.3390/s21237960.
9
Textile Slotted Waveguide Antennas for Body-Centric Applications.
Sensors (Basel). 2022 Jan 28;22(3):1046. doi: 10.3390/s22031046.
10
Longest-Range UHF RFID Sensor Tag Antenna for IoT Applied for Metal and Non-Metal Objects.
Sensors (Basel). 2019 Dec 11;19(24):5460. doi: 10.3390/s19245460.

引用本文的文献

1
Near-Field Microwave Resonating Sensor for Chronic Bone Assessment through Novel Electromagnetic Band Gap Structures.
ACS Omega. 2025 Jan 30;10(5):4987-4997. doi: 10.1021/acsomega.4c10595. eCollection 2025 Feb 11.
2
Miniaturized Capsule System Toward Real-Time Electrochemical Detection of H S in the Gastrointestinal Tract.
Adv Healthc Mater. 2024 Feb;13(5):e2302897. doi: 10.1002/adhm.202302897. Epub 2023 Dec 10.
3
UHF RFID tag localization using pattern reconfigurable reader antenna.
IEEE Annu Wirel Microw Technol Conf. 2022 Apr;2022. doi: 10.1109/wamicon53991.2022.9786069. Epub 2022 Jun 6.
4
Wearable 2.4 GHz Bluetooth Antenna for Respiration Monitoring and Contact Tracing.
Proc (IEEE Antennas Propag Soc Int Symp). 2022 Jul;2022:97-98. doi: 10.1109/ap-s/usnc-ursi47032.2022.9887274. Epub 2022 Sep 21.
7
Passive UHF RFID-based Knitted Wearable Compression Sensor.
IEEE Internet Things J. 2021 Sep 1;8(17):13763-13773. doi: 10.1109/jiot.2021.3068198. Epub 2021 Mar 23.
8
On the Effect of Sweat on Sheet Resistance of Knitted Conductive Yarns in Wearable Antenna Design.
IEEE Antennas Wirel Propag Lett. 2020 Apr;19(4):542-546. doi: 10.1109/lawp.2020.2971189. Epub 2020 Feb 3.
9
Channel Emulation for the Characterization of Wearable RFID Systems.
IEEE Annu Wirel Microw Technol Conf. 2021 Apr;2021. doi: 10.1109/wamicon47156.2021.9443623. Epub 2021 Jun 3.
10
UHF RFID Channel Emulation Testbed for Wireless IoT Systems.
IEEE Access. 2021;9:68523-68534. doi: 10.1109/access.2021.3077845. Epub 2021 May 5.

本文引用的文献

1
Ensemble Learning Approach via Kalman Filtering for a Passive Wearable Respiratory Monitor.
IEEE J Biomed Health Inform. 2019 May;23(3):1022-1031. doi: 10.1109/JBHI.2018.2857924. Epub 2018 Jul 20.
2
On the Use of Knitted Antennas and Inductively Coupled RFID Tags for Wearable Applications.
IEEE Trans Biomed Circuits Syst. 2016 Dec;10(6):1047-1057. doi: 10.1109/TBCAS.2016.2518871. Epub 2016 Apr 25.
3
Impedance imaging in the newborn.
Clin Phys Physiol Meas. 1987;8 Suppl A:131-40. doi: 10.1088/0143-0815/8/4a/017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验