WACKER-Chair of Macromolecular Chemistry, Technical University of Munich, Lichtenbergstraße 4 and Catalysis Research Center (CRC), Ernst-Otto-Fischer-Straße 1, Garching bei München, 85748, Germany.
Fraunhofer IGB, Schulgasse 11a, Straubing, 94315, Germany.
Macromol Rapid Commun. 2022 Sep;43(17):e2200185. doi: 10.1002/marc.202200185. Epub 2022 May 18.
In this work, the synthesis of limonene lactam starting from limonene epoxide and its subsequent ring-opening polymerization (ROP) to novel polyamides is presented. Sustainable, biobased materials are gaining interest as replacements of conventional, petroleum-based materials, and even more important, as high-performance materials for new applications. Terpenes-structurally advanced biobased compounds-are therefore of great interest. In this research, limonene lactam, a novel biobased monomer for preparing sustainable polyamides via ROP, can be synthesized. Limonene lactam possesses an isopropylene and a methyl side group, thus stereocenters posing special challenges and requirements for synthesis, analysis and polymerization. However, these difficult-to-synthesize structural elements can generate novel polymers with unique properties, e.g., functionalizability. In this work, a sustainable monomer synthesis is established, and simplified to industrial needs. For the sterically demanding in-bulk ROP to limonene polyamides, various initiators and conditions are tested. Polyamides with more than 100 monomer units are successfully synthesized and confirmed via nuclear magnetic resonance (NMR) spectroscopy and gel permeations chromatography (GPC). Differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) are used to analyze its thermal properties. In summary, a sustainable monomer synthesis is established, and promising polyamides with intact double bond and interesting thermal properties are achieved.
在这项工作中,从柠檬烯环氧化物出发合成柠檬烯内酰胺,并对其进行随后的开环聚合(ROP)以得到新型聚酰胺。可持续的、基于生物的材料作为传统石油基材料的替代品越来越受到关注,更重要的是,它们作为新型应用的高性能材料受到关注。萜烯——结构先进的基于生物的化合物——因此具有很大的研究兴趣。在这项研究中,可以合成新型的生物基单体柠檬烯内酰胺,用于通过 ROP 制备可持续的聚酰胺。柠檬烯内酰胺具有异丙基和甲基侧基,因此立体中心对合成、分析和聚合提出了特殊的挑战和要求。然而,这些难以合成的结构元素可以生成具有独特性能的新型聚合物,例如功能性。在这项工作中,建立了一种可持续的单体合成方法,并简化为工业需求。对于具有挑战性的在本体中进行的柠檬烯聚酰胺的 ROP,测试了各种引发剂和条件。成功地合成了具有 100 多个单体单元的聚酰胺,并通过核磁共振(NMR)光谱和凝胶渗透色谱(GPC)进行了确认。差示扫描量热法(DSC)和热重分析(TGA)用于分析其热性能。总之,建立了一种可持续的单体合成方法,并获得了具有完整双键和有趣热性能的有前途的聚酰胺。