Suppr超能文献

用于电子健康记录纵向研究的连续时间概率模型。

Continuous-time probabilistic models for longitudinal electronic health records.

机构信息

Computational Engineering Division, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550, USA.

Computational Engineering Division, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550, USA.

出版信息

J Biomed Inform. 2022 Jun;130:104084. doi: 10.1016/j.jbi.2022.104084. Epub 2022 May 7.

Abstract

Analysis of longitudinal Electronic Health Record (EHR) data is an important goal for precision medicine. Difficulty in applying Machine Learning (ML) methods, either predictive or unsupervised, stems in part from the heterogeneity and irregular sampling of EHR data. We present an unsupervised probabilistic model that captures nonlinear relationships between variables over continuous-time. This method works with arbitrary sampling patterns and captures the joint probability distribution between variable measurements and the time intervals between them. Inference algorithms are derived that can be used to evaluate the likelihood of future using under a trained model. As an example, we consider data from the United States Veterans Health Administration (VHA) in the areas of diabetes and depression. Likelihood ratio maps are produced showing the likelihood of risk for moderate-severe vs minimal depression as measured by the Patient Health Questionnaire-9 (PHQ-9).

摘要

分析纵向电子健康记录 (EHR) 数据是精准医学的一个重要目标。机器学习 (ML) 方法的应用困难,无论是预测性的还是无监督的,部分源于 EHR 数据的异质性和不规则采样。我们提出了一种无监督概率模型,用于捕获连续时间变量之间的非线性关系。该方法适用于任意采样模式,并捕获变量测量值之间以及它们之间的时间间隔之间的联合概率分布。导出了推理算法,可用于根据训练后的模型评估未来使用的可能性。作为一个例子,我们考虑了来自美国退伍军人事务部 (VHA) 在糖尿病和抑郁症领域的数据。生成似然比图,显示了使用患者健康问卷-9 (PHQ-9) 测量的中度严重与轻度抑郁的风险可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验