Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and.
Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.
J Immunol. 2022 Jun 1;208(11):2583-2592. doi: 10.4049/jimmunol.2100489. Epub 2022 May 9.
The monoallelic expression (allelic exclusion) of diverse lymphocyte Ag receptor genes enables specific immune responses. Allelic exclusion is achieved by asynchronous initiation of V(D)J recombination between alleles and protein encoded by successful rearrangement on the first allele signaling permanent inhibition of V rearrangement on the other allele. The ATM kinase that guides DNA repair and transiently suppresses V(D)J recombination also helps impose allelic exclusion through undetermined mechanisms. At the TCRβ locus, one Vβ gene segment () rearranges only by inversion, whereas all other Vβ segments rearrange by deletion except for rare cases in which they rearrange through inversion following rearrangement. The poor-quality recombination signal sequences (RSSs) of and help establish TCRβ gene repertoire and allelic exclusion by stochastically limiting initiation of Vβ rearrangements before TCRβ protein-signaled permanent silencing of Vβ recombination. We show in this study in mice that ATM functions with these RSSs and the weak RSS to shape TCRβ gene repertoire by restricting their Vβ segments from initiating recombination and hindering aberrant nonfunctional Vβ recombination products, especially during inversional rearrangements. We find that ATM collaborates with the and RSSs to help enforce allelic exclusion by facilitating competition between alleles for initiation and functional completion of rearrangements of these Vβ segments. Our data demonstrate that the fundamental genetic DNA elements that underlie inefficient Vβ recombination cooperate with ATM-mediated rapid DNA damage responses to help establish diversity and allelic exclusion of TCRβ genes.
单等位基因表达(等位基因排斥)的不同淋巴细胞 Ag 受体基因使能特异性免疫反应。等位基因排斥是通过等位基因之间的异步启动 V(D)J 重组和第一个等位基因上成功重排的蛋白质来实现的,该蛋白质信号对另一个等位基因上 V 重排的永久抑制。指导 DNA 修复并短暂抑制 V(D)J 重组的 ATM 激酶也通过未确定的机制有助于实施等位基因排斥。在 TCRβ 基因座上,只有一个 Vβ 基因片段()通过倒位重排,而所有其他 Vβ 片段通过缺失重排,除了极少数情况下它们在 重排后通过倒位重排。 和 的低质量重组信号序列 (RSS) 通过在 TCRβ 蛋白信号介导的 Vβ 重组永久沉默之前,随机限制 Vβ 重排的起始,有助于建立 TCRβ 基因库和等位基因排斥。我们在这项研究中在小鼠中表明,ATM 与这些 RSS 和弱的 RSS 一起作用,通过限制它们的 Vβ 片段启动重组并阻碍异常的非功能性 Vβ 重组产物,特别是在倒位 重排期间,来塑造 TCRβ 基因库。我们发现,ATM 通过促进这些 Vβ 片段的等位基因之间的竞争,有助于启动和完成重组,从而帮助实施等位基因排斥。我们的数据表明,基础遗传 DNA 元件,其低效 Vβ 重组合作与 ATM 介导的快速 DNA 损伤反应,以帮助建立多样性和 TCRβ 基因的等位基因排斥。