Farnworth Max S, Bucher Gregor, Hartenstein Volker
Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany.
Evolution of Brains and Behaviour lab, School of Biological Sciences, University of Bristol, Bristol, UK.
J Comp Neurol. 2022 Sep;530(13):2335-2371. doi: 10.1002/cne.25335. Epub 2022 May 10.
Insect brains are formed by conserved sets of neural lineages whose fibers form cohesive bundles with characteristic projection patterns. Within the brain neuropil, these bundles establish a system of fascicles constituting the macrocircuitry of the brain. The overall architecture of the neuropils and the macrocircuitry appear to be conserved. However, variation is observed, for example, in size, shape, and timing of development. Unfortunately, the developmental and genetic basis of this variation is poorly understood, although the rise of new genetically tractable model organisms such as the red flour beetle Tribolium castaneum allows the possibility to gain mechanistic insights. To facilitate such work, we present an atlas of the developing brain of T. castaneum, covering the first larval instar, the prepupal stage, and the adult, by combining wholemount immunohistochemical labeling of fiber bundles (acetylated tubulin) and neuropils (synapsin) with digital 3D reconstruction using the TrakEM2 software package. Upon comparing this anatomical dataset with the published work in Drosophila melanogaster, we confirm an overall high degree of conservation. Fiber tracts and neuropil fascicles, which can be visualized by global neuronal antibodies like antiacetylated tubulin in all invertebrate brains, create a rich anatomical framework to which individual neurons or other regions of interest can be referred to. The framework of a largely conserved pattern allowed us to describe differences between the two species with respect to parameters such as timing of neuron proliferation and maturation. These features likely reflect adaptive changes in developmental timing that govern the change from larval to adult brain.
昆虫的大脑由保守的神经谱系集合构成,这些谱系的纤维形成具有特征性投射模式的连贯束状结构。在脑髓质内,这些束状结构建立起一个构成大脑宏观回路的神经纤维束系统。脑髓质的整体结构和宏观回路似乎是保守的。然而,也观察到了一些变化,例如在大小、形状和发育时间方面。遗憾的是,尽管诸如赤拟谷盗等新的具有遗传易处理性的模式生物的出现为深入了解其机制提供了可能,但这种变化的发育和遗传基础仍知之甚少。为了推动此类研究工作,我们通过将纤维束(乙酰化微管蛋白)和脑髓质(突触素)的全组织免疫组化标记与使用TrakEM2软件包进行的数字3D重建相结合,呈现了一份赤拟谷盗发育中大脑的图谱,涵盖一龄幼虫期、蛹前期和成虫期。将这个解剖学数据集与已发表的黑腹果蝇研究成果进行比较后,我们确认了整体高度的保守性。纤维束和神经纤维束,在所有无脊椎动物大脑中都可以通过抗乙酰化微管蛋白等全局神经元抗体可视化,它们创建了一个丰富的解剖学框架,个体神经元或其他感兴趣的区域都可以与之关联。一个基本保守模式的框架使我们能够描述这两个物种在神经元增殖和成熟时间等参数方面的差异。这些特征可能反映了发育时间上的适应性变化,这种变化控制着从幼虫大脑到成体大脑的转变。