Suppr超能文献

探索肺部给药后内在的微/纳米颗粒大小对其体内命运的影响。

Exploring the intrinsic micro-/nanoparticle size on their in vivo fate after lung delivery.

机构信息

School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.

School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.

出版信息

J Control Release. 2022 Jul;347:435-448. doi: 10.1016/j.jconrel.2022.05.006. Epub 2022 May 19.

Abstract

Micro-/nanocarriers due to their significant advantages are widely investigated in pulmonary drug delivery. However, different size carriers have varied drug release rate, concealing the effect of particle size on the fate of drugs in vivo. Therefore, by keeping drug release rate comparable, the objective of this study is to elucidate the influence of particle size itself on drug in vivo fate after intratracheal instillation to mice. Here, using paclitaxel (PTX) as a drug model, 100 nm, 300 nm, 800 nm, and 2500 nm poly(lactide-co-glycolide) (PLGA) particles with the same release rate were prepared. It was demonstrated that the in vivo fate of particles after lung delivery was size-dependent. Consistent with most reports of model particles with neglected release kinetics, the mucus penetration capacity in airtifical mucus decreased with increasing particle size and there is no significant difference between 800 nm and 2500 nm particles. The in vivo airway distribution experiments confirmed the results of the in vitro mucus penetration study, that is, the smaller the particles, the more distributed in the airway. Both in vitro and in vivo macrophage uptake results confirmed that the larger particles were more readily taken up by macrophages. In contrast, the uptake of smaller particles in A549 cells was higher than that of larger particles. Some new findings were disclosed in lung retention, lung absorption and lung targeting. Different from previous reports, this study demonstrated that particles with smaller size had longer lung retention, AUC in bronchoalveolar lavage fluid (BALF) of 100 nm particles was 1.6, 1.9, 2.5 times higher than that of 300 nm, 800 nm, and 2500 nm particles and 11.7 times of the PTX solution group. The same trend was observed in lung tissue absorption, the AUC in the lavaged lung of 100 nm particles was 1.8, 2.2, 2.8, 8.6 times higher than that of 300 nm, 800 nm, 2500 nm particles and PTX solution groups, respectively. The lung targeting efficiency was particles size independent. In conclusion, the in vivo fate of particles with the same release kinetics after intratracheal instillation is size-dependent, smaller size particles are conducive for lung retention and lung absorption. Overall, our study provided scientific guidance for the rational design of particle based pulmonary drug delivery system.

摘要

由于其显著的优势,微/纳米载体在肺部药物传递中得到了广泛的研究。然而,不同大小的载体具有不同的药物释放速率,这掩盖了颗粒大小对药物在体内命运的影响。因此,通过保持药物释放速率相当,本研究的目的是阐明在气管内滴注到小鼠体内后,颗粒大小本身对药物体内命运的影响。在这里,以紫杉醇(PTX)为药物模型,制备了具有相同释放速率的 100nm、300nm、800nm 和 2500nm 聚(乳酸-共-乙醇酸)(PLGA)颗粒。结果表明,肺部给药后颗粒的体内命运是依赖于颗粒大小的。与大多数忽略释放动力学的模型颗粒的报告一致,在人工粘液中的粘液穿透能力随着颗粒大小的增加而降低,800nm 和 2500nm 颗粒之间没有显著差异。体内气道分布实验证实了体外粘液穿透研究的结果,即颗粒越小,在气道中的分布越广。体外和体内巨噬细胞摄取结果均证实,较大的颗粒更容易被巨噬细胞摄取。相比之下,较小颗粒在 A549 细胞中的摄取量高于较大颗粒。在肺保留、肺吸收和肺靶向方面有一些新的发现。与以往的报告不同,本研究表明,较小粒径的颗粒具有更长的肺保留时间,100nm 颗粒在支气管肺泡灌洗液(BALF)中的 AUC 分别比 300nm、800nm 和 2500nm 颗粒高 1.6、1.9 和 2.5 倍,比 PTX 溶液组高 11.7 倍。在肺组织吸收中也观察到相同的趋势,100nm 颗粒在灌洗肺中的 AUC 分别比 300nm、800nm、2500nm 颗粒和 PTX 溶液组高 1.8、2.2、2.8 和 8.6 倍。肺靶向效率与颗粒大小无关。总之,气管内滴注后具有相同释放动力学的颗粒的体内命运是依赖于颗粒大小的,较小粒径的颗粒有利于肺保留和肺吸收。总的来说,我们的研究为基于颗粒的肺部药物传递系统的合理设计提供了科学指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验