Tang Bing, Kong Miqiu, Yang Qi, Huang Yajiang, Li Guangxian
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University Chengdu 610065 P. R. China
School of Aeronautics and Astronautics, Sichuan University Chengdu 610065 P. R. China.
RSC Adv. 2018 May 14;8(31):17380-17388. doi: 10.1039/c8ra01017j. eCollection 2018 May 9.
Flexible reactive poly(glycidyl methacrylate)--poly(propylene glycol)--poly(glycidyl methacrylate) (GPG) and nonreactive poly(ethylene glycol)--poly(propylene glycol)--poly(ethylene glycol) (EPE80) were utilized to toughen a trifunctional epoxy (diglycidyl 4, 5-epoxycyclohexane-1, 2-dicarboxylate, TDE-85). In comparison with the nonreactive EPE80 and reactive GPG92 with long reactive blocks ( ), the incorporation of reactive GPG83 with short improved the comprehensive mechanical properties of the epoxy. Upon an optimal GPG83 loading of 2.5 wt%, the tensile strength, elongation at break and critical strain energy release rate ( ) increased by 31%, 45.9% and 130.8%, respectively, without sacrificing the modulus and thermal stability. Morphology characterization evidenced that micro-scale domains and nanosized vesical micelles coexisted in the nonreactive EPE80 toughened systems. However, homogeneous morphologies were formed in reactive GPG83 and GPG92 toughened systems. Fracture morphology analysis suggested that GPG can toughen epoxy thermosets by incorporating flexible PPG blocks into the epoxy network, thereby enabling an energy dissipation mechanism. The good balance between the mobility of flexible PPG and degree of cross-link density leads to the simultaneous toughening and reinforcing effect of GPG83 toward the trifunctional epoxy.
采用柔性反应性聚(甲基丙烯酸缩水甘油酯)-聚(丙二醇)-聚(甲基丙烯酸缩水甘油酯)(GPG)和非反应性聚(乙二醇)-聚(丙二醇)-聚(乙二醇)(EPE80)对三官能环氧树脂(4,5-环氧环己烷-1,2-二甲酸二缩水甘油酯,TDE-85)进行增韧。与具有长反应性嵌段的非反应性EPE80和反应性GPG92相比,加入具有短反应性嵌段的反应性GPG83改善了环氧树脂的综合力学性能。当GPG83的最佳添加量为2.5 wt%时,拉伸强度、断裂伸长率和临界应变能释放率分别提高了31%、45.9%和130.8%,而不牺牲模量和热稳定性。形态表征表明,在非反应性EPE80增韧体系中,微米级微区和纳米级囊泡状胶束共存。然而,在反应性GPG83和GPG92增韧体系中形成了均匀的形态。断裂形态分析表明,GPG可以通过将柔性PPG嵌段引入环氧树脂网络来增韧环氧热固性材料,从而实现能量耗散机制。柔性PPG的流动性和交联密度之间的良好平衡导致GPG83对三官能环氧树脂同时具有增韧和增强作用。