Suppr超能文献

核糖核酸:由病毒样颗粒包装并保护。

RNA: packaged and protected by VLPs.

作者信息

Fang Po-Yu, Bowman Jessica C, Gómez Ramos Lizzette M, Hsiao Chiaolong, Williams Loren Dean

机构信息

School of Chemistry and Biochemistry, Georgia Institute of Technology Atlanta GA 30332 USA

School of Chemical and Biomolecular Engineering, Georgia Institute of Technology Atlanta GA 30332 USA.

出版信息

RSC Adv. 2018 Jun 12;8(38):21399-21406. doi: 10.1039/c8ra02084a. eCollection 2018 Jun 8.

Abstract

Virus Like Particles (VLPs) are devices for RNA packaging, protection and delivery, with utility in fundamental research, drug discovery, and disease treatment. Using for combined expression and packaging of non-viral RNAs into Qβ VLPs, we investigated the extent of chemical protection conferred by packaging of RNA in VLPs. We also probed relationships between packaging efficiency and RNA size, sequence and intrinsic compaction. We observe that VLP packaging protects RNA against assault by small diffusible damaging agents such as hydroxyl radicals and divalent cations. By contrast, the extent of unmediated cleavage, in the absence of reactive species, is the same for RNA that is free or packaged within VLPs, and is very slow. packaging of RNA within VLPs appears to be more efficient for intrinsically compact RNAs, such as rRNA, and less efficient for unstructured, elongated RNA such as mRNA. Packaging efficiency is reduced by addition of the ribosome binding site to a target RNA. The Qβ hairpin is necessary but not sufficient for efficient packaging.

摘要

病毒样颗粒(VLPs)是用于RNA包装、保护和递送的工具,在基础研究、药物发现和疾病治疗中具有实用价值。通过使用[具体方法]将非病毒RNA联合表达并包装到Qβ病毒样颗粒中,我们研究了RNA包装在病毒样颗粒中所赋予的化学保护程度。我们还探究了包装效率与RNA大小、序列及内在压缩性之间的关系。我们观察到,病毒样颗粒包装可保护RNA免受诸如羟基自由基和二价阳离子等小分子可扩散损伤剂的攻击。相比之下,在没有反应性物质的情况下,游离或包装在病毒样颗粒内的RNA的非介导切割程度相同,且非常缓慢。对于诸如rRNA等内在紧密的RNA,RNA在病毒样颗粒内的包装似乎更有效,而对于诸如mRNA等无结构的延长RNA则效率较低。将核糖体结合位点添加到靶RNA会降低包装效率。Qβ发夹对于有效包装是必要的,但并不充分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6a3/9080931/11e7a3772db5/c8ra02084a-f1.jpg

相似文献

1
RNA: packaged and protected by VLPs.
RSC Adv. 2018 Jun 12;8(38):21399-21406. doi: 10.1039/c8ra02084a. eCollection 2018 Jun 8.
2
Functional RNAs: combined assembly and packaging in VLPs.
Nucleic Acids Res. 2017 Apr 7;45(6):3519-3527. doi: 10.1093/nar/gkw1154.
4
Yeast-expressed bacteriophage-like particles for the packaging of nanomaterials.
Mol Biotechnol. 2014 Feb;56(2):102-10. doi: 10.1007/s12033-013-9686-0.
5
BPV1 E2 protein enhances packaging of full-length plasmid DNA in BPV1 pseudovirions.
Virology. 2000 Jul 5;272(2):382-93. doi: 10.1006/viro.2000.0348.
6
Specific Packaging of Custom RNA Molecules into Cowpea Mosaic Virus-like Particles.
Methods Mol Biol. 2022;2480:103-111. doi: 10.1007/978-1-0716-2241-4_7.
10
Multifunctional Enzyme Packaging and Catalysis in the Qβ Protein Nanoparticle.
Biomacromolecules. 2018 Oct 8;19(10):3945-3957. doi: 10.1021/acs.biomac.8b00885. Epub 2018 Aug 30.

引用本文的文献

1
The RNA Landscape of In Vivo-Assembled MS2 Virus-Like Particles as mRNA Carriers Reveals RNA Contamination from Host Viruses.
Nano Lett. 2025 Feb 26;25(8):3038-3044. doi: 10.1021/acs.nanolett.4c04541. Epub 2025 Feb 11.
2
Effective removal of host cell-derived nucleic acids bound to hepatitis B core antigen virus-like particles by heparin chromatography.
Front Bioeng Biotechnol. 2024 Oct 3;12:1475918. doi: 10.3389/fbioe.2024.1475918. eCollection 2024.
3
RNA and Single-Stranded DNA Phages: Unveiling the Promise from the Underexplored World of Viruses.
Int J Mol Sci. 2023 Dec 1;24(23):17029. doi: 10.3390/ijms242317029.
5
Bioengineered Bacteriophage-Like Nanoparticles as RNAi Therapeutics to Enhance Radiotherapy against Glioblastomas.
ACS Nano. 2023 Jun 13;17(11):10407-10422. doi: 10.1021/acsnano.3c01102. Epub 2023 Apr 25.
7
Development of SARS-CoV-2 packaged RNA reference material for nucleic acid testing.
Anal Bioanal Chem. 2022 Feb;414(5):1773-1785. doi: 10.1007/s00216-021-03846-y. Epub 2021 Dec 27.
8
Virus-inspired strategies for cancer therapy.
Semin Cancer Biol. 2022 Nov;86(Pt 3):1143-1157. doi: 10.1016/j.semcancer.2021.06.021. Epub 2021 Jun 26.

本文引用的文献

1
Characterization of T-Dependent and T-Independent B Cell Responses to a Virus-like Particle.
J Immunol. 2017 May 15;198(10):3846-3856. doi: 10.4049/jimmunol.1601852. Epub 2017 Apr 17.
2
Functional RNAs: combined assembly and packaging in VLPs.
Nucleic Acids Res. 2017 Apr 7;45(6):3519-3527. doi: 10.1093/nar/gkw1154.
3
Production methods for viral particles.
Biotechnol Lett. 2015 Apr;37(4):753-60. doi: 10.1007/s10529-014-1741-9. Epub 2014 Dec 9.
4
Encapsidated atom-transfer radical polymerization in Qβ virus-like nanoparticles.
ACS Nano. 2014 Aug 26;8(8):8003-14. doi: 10.1021/nn502043d. Epub 2014 Jul 29.
6
Gene regulation by antisense transcription.
Nat Rev Genet. 2013 Dec;14(12):880-93. doi: 10.1038/nrg3594. Epub 2013 Nov 12.
7
Crystal structure of the bacteriophage Qβ coat protein in complex with the RNA operator of the replicase gene.
J Mol Biol. 2014 Mar 6;426(5):1039-49. doi: 10.1016/j.jmb.2013.08.025. Epub 2013 Sep 11.
9
Co-expression of RNA-protein complexes in Escherichia coli and applications to RNA biology.
Nucleic Acids Res. 2013 Aug;41(15):e150. doi: 10.1093/nar/gkt576. Epub 2013 Jun 26.
10
Packaging signals in two single-stranded RNA viruses imply a conserved assembly mechanism and geometry of the packaged genome.
J Mol Biol. 2013 Sep 9;425(17):3235-49. doi: 10.1016/j.jmb.2013.06.005. Epub 2013 Jun 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验