Yao Cen, Sun Yu, Zhao Kaisen, Wu Tong, Mauger Alain, Julien Christian M, Cong Lina, Liu Jia, Xie Haiming, Sun Liqun
National & Local United Engineering Laboratory for Power Battery, Northeast Normal University Changchun 130024 PR China
Sorbonne University, UPMC University Paris 06, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), CNRS UMR 7590 4 Place Jussieu 75005 Paris France.
RSC Adv. 2018 Jan 17;8(7):3443-3452. doi: 10.1039/c7ra12194f. eCollection 2018 Jan 16.
Constructing a reliable conductive carbon matrix is essential for the sulfur-containing cathode materials of lithium-sulfur batteries. A ready-made conductive matrix infiltrated with sulfur as the cathode is the usual solution. Here, a partially reduced graphene oxide-sulfur composite (prGO/S) with an ordered self-assembled layer-by-layer structure is introduced as a Li-S battery cathode. The prGO/S composites are synthesized through a facile one-step self-assembly liquid route. An appropriate amount of sulfur is deposited on the surface of the prGO nanosheets by adjusting the reduction degree of the GO nanosheets. The combined effect of the electrostatic repulsions and surface energy makes the sulfur wrapped prGO nanosheets self-assemble to form an ordered layer-by-layer structure, which not only ensures the uniform distribution of sulfur but also accommodates the volume change of the sulfur species during cycling. Moreover, the conductivity of the prGO/S composites improves when the reduction time increases. XPS spectra confirm that sulfur is still chemically bonded to the prGO. After applying the prGO coating of the prGO/S composite particle and as an interlayer in a lithium-sulfur battery configuration, a high initial discharge capacity of 1275.8 mA h g is achieved and the discharge capacity of the 100th cycle is 1013.8 mA h g at 0.1C rate.
构建可靠的导电碳基体对于锂硫电池的含硫正极材料至关重要。一种现成的用硫浸润的导电基体作为正极是常用的解决方案。在此,引入一种具有有序自组装层层结构的部分还原氧化石墨烯 - 硫复合材料(prGO/S)作为锂硫电池正极。prGO/S复合材料通过简便的一步自组装液相路线合成。通过调节氧化石墨烯(GO)纳米片的还原程度,在prGO纳米片表面沉积适量的硫。静电排斥和表面能的共同作用使硫包裹的prGO纳米片自组装形成有序的层层结构,这不仅确保了硫的均匀分布,还能适应循环过程中硫物种的体积变化。此外,随着还原时间增加,prGO/S复合材料的导电性提高。X射线光电子能谱(XPS)证实硫仍与prGO化学键合。在锂硫电池结构中,将prGO/S复合颗粒的prGO涂层用作中间层后,在0.1C倍率下实现了1275.8 mA h g的高初始放电容量,第100次循环的放电容量为1013.8 mA h g。