Suppr超能文献

基于分子动力学的雌激素受体潜在稳定构象作为基于结构的药效团模型用于配体的映射、筛选和鉴定——药效团筛选的新范式转变。

Estrogen receptor potentially stable conformations from molecular dynamics as a structure-based pharmacophore model for mapping, screening, and identifying ligands-a new paradigm shift in pharmacophore screening.

机构信息

Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Guntur, Andhra Pradesh, India.

出版信息

J Biomol Struct Dyn. 2023 Jul;41(11):4939-4948. doi: 10.1080/07391102.2022.2074543. Epub 2022 May 11.

Abstract

Despite rigorous research on breast cancer has increased in recent decades, only few drugs are in practice to combat against the disease. Due to excessive usage, these drugs attain resistance is an avertable phenomenon resulting from inadequate treatment. A novel, and real-time approaches are expected to overcome to find the solution for the drug resistance. The molecular dynamics based multi-conformational sampling technique via computer-aided drug-designing approach, may be a promising route to identify the lead candidates from real-time generated frames. The estrogenic receptor, being one of the most widely targeted receptors for various breast cancer drugs namely, tamoxifen, raloxifene and GW5 (tamoxifen-resistance inhibitor) was used for simulating the molecular dynamics to obtain various real time frames. The energetically stable frames were funnelled based on Gibbs free binding energy, interaction energy and active site interaction to generate pharmacophores model for virtual screening of compounds. Generated pharmacophores are validated by receiver operating characteristic area under curve greater than 0.8. Further, screening of compounds with validated structure-based pharmacophore model of different estrogen bound drug complex conformations and binding orientations are complement for tamoxifen and tamoxifen-resistance inhibitor frames. Moreover, the best mapped compounds were docked and probed for ADMET, TopKat® and Lipinski's rule of five is more favourable for compound Andrographidine F sourced from medicinal herbal plant Hence, this compound had to be further analysed in and to prove the same.Communicated by Ramaswamy H. Sarma.

摘要

尽管近几十年来对乳腺癌的研究已经很深入,但实际上只有少数几种药物可用于治疗这种疾病。由于过度使用,这些药物产生耐药性是一种不可避免的现象,这是由于治疗不当造成的。因此,人们期望采用新的、实时的方法来克服耐药性问题,找到解决方案。基于计算机辅助药物设计的分子动力学多构象采样技术可能是一种很有前途的方法,可以从实时生成的结构中识别出先导候选物。雌激素受体是最广泛针对各种乳腺癌药物的受体之一,如他莫昔芬、雷洛昔芬和 GW5(他莫昔芬耐药抑制剂),用于模拟分子动力学以获得各种实时结构。根据吉布斯自由结合能、相互作用能和活性位点相互作用,将能量稳定的结构过滤到漏斗中,以生成药效团模型,用于化合物的虚拟筛选。生成的药效团通过接受者操作特征曲线下面积大于 0.8 进行验证。此外,对不同结合药物构象和结合取向的结合雌激素的药物复合结构的验证药效团模型进行化合物筛选,对他莫昔芬和他莫昔芬耐药抑制剂结构进行补充。此外,对最佳映射化合物进行对接和 ADMET 分析,TopKat®和 Lipinski 的五规则更有利于从药用植物穿心莲中提取的化合物穿心莲定 F。因此,必须在和中进一步分析该化合物,以证明这一点。由 Ramaswamy H. Sarma 传达。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验