Bunkan Arne Joakim C, Reijrink Nina G, Mikoviny Tomáš, Müller Markus, Nielsen Claus J, Zhu Liang, Wisthaler Armin
Section of Environmental Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033-Blindern, 0315 Oslo, Norway.
Institute for Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria.
J Phys Chem A. 2022 May 26;126(20):3247-3264. doi: 10.1021/acs.jpca.2c01925. Epub 2022 May 11.
The OH-initiated photo-oxidation of -methylmethanimine, CHN═CH, was investigated in the 200 m EUPHORE atmospheric simulation chamber and in a 240 L stainless steel photochemical reactor employing time-resolved online FTIR and high-resolution PTR-ToF-MS instrumentation and in theoretical calculations based on quantum chemistry results and master equation modeling of the pivotal reaction steps. The quantum chemistry calculations forecast the OH reaction to primarily proceed via H-abstraction from the ═CH group and π-system C-addition, whereas H-abstraction from the -CH group is a minor route and forecast that N-addition can be disregarded under atmospheric conditions. Theoretical studies of CHN═CH photolysis and the CHN═CH + O reaction show that these removal processes are too slow to be important in the troposphere. A detailed mechanism for OH-initiated atmospheric degradation of CHN═CH was obtained as part of the theoretical study. The photo-oxidation experiments, obstructed in part by the CHN═CH monomer-trimer equilibrium, surface reactions, and particle formation, find CH═NCHO and CHN═CHOH/CH═NCHOH as the major primary products in a ratio 18:82 ± 3 (3σ-limit). Alignment of the theoretical results to the experimental product distribution results in a rate coefficient, showing a minor pressure dependency under tropospheric conditions and that can be parametrized () = 5.70 × 10 × (/298 K) × exp(1245 K/) cm molecule s with = 3.7 × 10 cm molecule s. The atmospheric fate of CHN═CH is discussed, and it is concluded that, on a global scale, hydrolysis in the atmospheric aqueous phase to give CHNH + CHO will constitute a dominant loss process. NO will not be formed in the atmospheric gas phase degradation, and there are no indications of nitrosamines and nitramines formed as primary products.
在200立方米的EUPHORE大气模拟舱以及一个240升的不锈钢光化学反应器中,利用时间分辨在线傅里叶变换红外光谱仪和高分辨率质子转移反应飞行时间质谱仪,对α-甲基甲亚胺(CHN═CH)的OH引发光氧化反应进行了研究,并基于量子化学结果和关键反应步骤的主方程模型进行了理论计算。量子化学计算预测,OH反应主要通过从═CH基团夺取氢以及π-体系C加成进行,而从-CH基团夺取氢是次要途径,并预测在大气条件下N加成可忽略不计。对CHN═CH光解以及CHN═CH + O反应的理论研究表明,这些去除过程在对流层中太慢而不重要。作为理论研究的一部分,获得了OH引发的CHN═CH大气降解的详细机理。光氧化实验部分受到CHN═CH单体-三聚体平衡、表面反应和颗粒形成的阻碍,发现CH═NCHO和CHN═CHOH/CH═NCHOH是主要的初级产物,比例为18:82 ± 3(3σ极限)。将理论结果与实验产物分布进行比对得到一个速率系数,该系数在对流层条件下显示出较小的压力依赖性,可参数化为() = 5.70 × 10 × (/298 K) × exp(1245 K/) cm³ molecule⁻¹ s⁻¹,其中 = 3.7 × 10 cm³ molecule⁻¹ s⁻¹。讨论了CHN═CH在大气中的归宿,得出结论:在全球范围内,大气水相中水解生成CHNH₂ + CHO将是主要的损失过程。大气气相降解过程中不会形成NO,也没有迹象表明会形成亚硝胺和硝胺作为初级产物。