Suppr超能文献

机器学习在心脏外科学中的应用:预测死亡率和再入院率。

Machine Learning in Cardiac Surgery: Predicting Mortality and Readmission.

机构信息

From the Bonde Cardiac Surgical Laboratory, Department of Surgery, Yale School of Medicine, New Haven, Connecticut.

Section of Cardiac Surgery, Department of Surgery, Yale School of Medicine, New Haven, Connecticut.

出版信息

ASAIO J. 2022 Dec 1;68(12):1490-1500. doi: 10.1097/MAT.0000000000001696. Epub 2022 May 9.

Abstract

Predicting outcomes in open-heart surgery can be challenging. Unexpected readmissions, long hospital stays, and mortality have economic implications. In this study, we investigated machine learning (ML) performance in data visualization and predicting patient outcomes associated with open-heart surgery. We evaluated 8,947 patients who underwent cardiac surgery from April 2006 to January 2018. Data visualization and classification were performed at cohort-level and patient-level using clustering, correlation matrix, and seven different predictive models for predicting three outcomes ("Discharged," "Died," and "Readmitted") at binary level. Cross-validation was used to train and test each dataset with the application of hyperparameter optimization and data imputation techniques. Machine learning showed promising performance for predicting mortality (AUC 0.83 ± 0.03) and readmission (AUC 0.75 ± 0.035). The cohort-level analysis revealed that ML performance is comparable to the Society of Thoracic Surgeons (STS) risk model even with limited number of samples ( e.g. , less than 3,000 samples for ML versus more than 100,000 samples for the STS risk models). With all cases (8,947 samples, referred as patient-level analysis), ML showed comparable performance to what has been reported for the STS models. However, we acknowledge that it remains unknown at this stage as to how the model might perform outside the institution and does not in any way constitute a comparison of the performance of the internal model with the STS model. Our study demonstrates a systematic application of ML in analyzing and predicting outcomes after open-heart surgery. The predictive utility of ML in cardiac surgery and clinical implications of the results are highlighted.

摘要

预测心脏直视手术的结果具有挑战性。意外再入院、住院时间长和死亡率都具有经济意义。在这项研究中,我们研究了机器学习(ML)在数据可视化和预测与心脏直视手术相关的患者结果方面的性能。我们评估了 8947 名 2006 年 4 月至 2018 年 1 月期间接受心脏手术的患者。在队列水平和患者水平上使用聚类、相关矩阵和七种不同的预测模型进行数据可视化和分类,以二元水平预测三个结果(“出院”、“死亡”和“再入院”)。使用超参数优化和数据插补技术对每个数据集进行交叉验证,以训练和测试。机器学习在预测死亡率(AUC 0.83±0.03)和再入院率(AUC 0.75±0.035)方面表现出良好的性能。队列水平分析表明,即使样本数量有限(例如,ML 少于 3000 个样本,而 STS 风险模型超过 100000 个样本),ML 的性能也可与胸外科医生学会(STS)风险模型相媲美。对于所有病例(8947 个样本,称为患者水平分析),ML 的性能与 STS 模型的报告结果相当。然而,我们承认,在现阶段尚不清楚该模型在机构之外的表现如何,而且这绝不是对内部模型与 STS 模型性能的比较。我们的研究展示了 ML 在分析和预测心脏直视手术后结果方面的系统应用。强调了 ML 在心脏手术中的预测效用和结果的临床意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验