Suppr超能文献

控制聚合物立构规整度和结晶度来获得精细触觉感知。

Controlling fine touch sensations with polymer tacticity and crystallinity.

机构信息

Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA.

Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA.

出版信息

Soft Matter. 2022 May 25;18(20):3928-3940. doi: 10.1039/d2sm00264g.

Abstract

The friction generated between a finger and an object forms the mechanical stimuli behind fine touch perception. To control friction, and therefore tactile perception, current haptic devices typically rely on physical features like bumps or pins, but chemical and microscale morphology of surfaces could be harnessed to recreate a wider variety of tactile sensations. Here, we sought to develop a new way to create tactile sensations by relying on differences in microstructure as quantified by the degree of crystallinity in polymer films. To isolate crystallinity, we used polystyrene films with the same chemical formula and number averaged molecular weights, but which differed in tacticity and annealing conditions. These films were also sufficiently thin as to be rigid which minimized effects from bulk stiffness and had variations in roughness lower than detectable by humans. To connect crystallinity to human perception, we performed mechanical testing with a mock finger to form predictions about the degree of crystallinity necessary to result in successful discrimination by human subjects. Psychophysical testing verified that humans could discriminate surfaces which differed only in the degree of crystallinity. Although related, human performance was not strongly correlated with a straightforward difference in the degree of crystallinity. Rather, human performance was better explained by quantifying transitions in steady to unsteady sliding and the generation of slow frictional waves ( = 79.6%). Tuning fine touch with polymer crystallinity may lead to better engineering of existing haptic interfaces or lead to new classes of actuators based on changes in microstructure.

摘要

手指与物体之间产生的摩擦形成了精细触觉感知背后的机械刺激。为了控制摩擦,从而控制触觉,当前的触觉设备通常依赖于凸块或针脚等物理特征,但表面的化学和微观形貌也可以被利用来重新创造更广泛的触觉感觉。在这里,我们试图通过依赖聚合物薄膜的结晶度来量化的微观结构差异来开发一种创造触觉感觉的新方法。为了分离结晶度,我们使用了具有相同化学式和数均分子量但在立构规整度和退火条件上有所不同的聚苯乙烯薄膜。这些薄膜足够薄,可以保持刚性,从而最大限度地减少了来自体弹性的影响,并且粗糙度变化低于人类可检测的水平。为了将结晶度与人类感知联系起来,我们使用模拟手指进行了机械测试,以便对导致人类受试者成功区分所需的结晶度程度进行预测。心理物理测试验证了人类可以区分仅在结晶度程度上有所不同的表面。尽管相关,但人类的表现与结晶度的直接差异并没有很强的相关性。相反,通过量化稳态到非稳态滑动的转变以及产生慢摩擦波(=79.6%),可以更好地解释人类的表现。通过聚合物结晶度来调整精细触觉可能会导致更好地设计现有的触觉接口,或者导致基于微观结构变化的新型致动器。

相似文献

1
Controlling fine touch sensations with polymer tacticity and crystallinity.
Soft Matter. 2022 May 25;18(20):3928-3940. doi: 10.1039/d2sm00264g.
4
Perception-based 3D tactile rendering from a single image for human skin examinations by dynamic touch.
Skin Res Technol. 2015 May;21(2):164-74. doi: 10.1111/srt.12173. Epub 2014 Aug 4.
5
The finishing touches: the role of friction and roughness in haptic perception of surface coatings.
Exp Brain Res. 2020 Jun;238(6):1511-1524. doi: 10.1007/s00221-020-05831-w. Epub 2020 May 23.
6
Tactile Perception of Coated Smooth Surfaces.
IEEE Trans Haptics. 2023 Oct-Dec;16(4):586-593. doi: 10.1109/TOH.2023.3274352. Epub 2023 Dec 21.
7
Detection of Friction-Modulated Textures is Limited by Vibrotactile Sensitivity.
IEEE Trans Haptics. 2020 Jul-Sep;13(3):542-551. doi: 10.1109/TOH.2020.2985364. Epub 2020 Apr 6.
8
Friction and neuroimaging of active and passive tactile touch.
Sci Rep. 2023 Aug 11;13(1):13077. doi: 10.1038/s41598-023-40326-y.
9
Complexity, rate, and scale in sliding friction dynamics between a finger and textured surface.
Sci Rep. 2018 Sep 12;8(1):13710. doi: 10.1038/s41598-018-31818-3.
10
FW-Touch: A Finger Wearable Haptic Interface With an MR Foam Actuator for Displaying Surface Material Properties on a Touch Screen.
IEEE Trans Haptics. 2019 Jul-Sep;12(3):281-294. doi: 10.1109/TOH.2019.2920349. Epub 2019 Jun 4.

引用本文的文献

1
Alternatives to Friction Coefficient: Fine Touch Perception Correlates with Frictional Instabilities.
bioRxiv. 2025 May 22:2024.10.25.620351. doi: 10.1101/2024.10.25.620351.

本文引用的文献

1
Organic Haptics: Intersection of Materials Chemistry and Tactile Perception.
Adv Funct Mater. 2020 Jul 16;30(29). doi: 10.1002/adfm.201906850. Epub 2019 Oct 29.
3
Remote Friction Reduction on Resonant Film Surface by Airborne Ultrasound.
IEEE Trans Haptics. 2021 Apr-Jun;14(2):260-265. doi: 10.1109/TOH.2021.3075979. Epub 2021 Jun 17.
4
Microphysical Modeling of Carbonate Fault Friction at Slip Rates Spanning the Full Seismic Cycle.
J Geophys Res Solid Earth. 2021 Mar;126(3):e2020JB021024. doi: 10.1029/2020JB021024. Epub 2021 Mar 25.
5
Tactile perception of randomly rough surfaces.
Sci Rep. 2020 Sep 25;10(1):15800. doi: 10.1038/s41598-020-72890-y.
7
Role of indentation depth and contact area on human perception of softness for haptic interfaces.
Sci Adv. 2019 Aug 30;5(8):eaaw8845. doi: 10.1126/sciadv.aaw8845. eCollection 2019 Aug.
8
Physical Ageing of Polystyrene: Does Tacticity Play a Role?
Macromolecules. 2019 Aug 13;52(15):5948-5954. doi: 10.1021/acs.macromol.9b01042. Epub 2019 Jul 31.
9
Contact mechanics between the human finger and a touchscreen under electroadhesion.
Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):12668-12673. doi: 10.1073/pnas.1811750115. Epub 2018 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验