Suppr超能文献

飞行昆虫物种中线粒体氧消耗和底物氧化的灵活热敏感性

Flexible Thermal Sensitivity of Mitochondrial Oxygen Consumption and Substrate Oxidation in Flying Insect Species.

作者信息

Menail Hichem A, Cormier Simon B, Ben Youssef Mariem, Jørgensen Lisa Bjerregaard, Vickruck Jess L, Morin Pier, Boudreau Luc H, Pichaud Nicolas

机构信息

New Brunswick Centre for Precision Medicine, Moncton, NB, Canada.

Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada.

出版信息

Front Physiol. 2022 Apr 25;13:897174. doi: 10.3389/fphys.2022.897174. eCollection 2022.

Abstract

Mitochondria have been suggested to be paramount for temperature adaptation in insects. Considering the large range of environments colonized by this taxon, we hypothesized that species surviving large temperature changes would be those with the most flexible mitochondria. We thus investigated the responses of mitochondrial oxidative phosphorylation (OXPHOS) to temperature in three flying insects: the honeybee (), the fruit fly () and the Colorado potato beetle (). Specifically, we measured oxygen consumption in permeabilized flight muscles of these species at 6, 12, 18, 24, 30, 36, 42 and 45°C, sequentially using complex I substrates, proline, succinate, and glycerol-3-phosphate (G3P). Complex I respiration rates (CI-OXPHOS) were very sensitive to temperature in honeybees and fruit flies with high oxygen consumption at mid-range temperatures but a sharp decline at high temperatures. Proline oxidation triggers a major increase in respiration only in potato beetles, following the same pattern as CI-OXPHOS for honeybees and fruit flies. Moreover, both succinate and G3P oxidation allowed an important increase in respiration at high temperatures in honeybees and fruit flies (and to a lesser extent in potato beetles). However, when reaching 45°C, this G3P-induced respiration rate dropped dramatically in fruit flies. These results demonstrate that mitochondrial functions are more resilient to high temperatures in honeybees compared to fruit flies. They also indicate an important but species-specific mitochondrial flexibility for substrate oxidation to sustain high oxygen consumption levels at high temperatures and suggest previously unknown adaptive mechanisms of flying insects' mitochondria to temperature.

摘要

线粒体被认为对昆虫的温度适应至关重要。鉴于该类群所占据的环境范围广泛,我们推测能够在大幅度温度变化中存活的物种,其线粒体具有最大的灵活性。因此,我们研究了三种飞行昆虫:蜜蜂( )、果蝇( )和科罗拉多马铃薯甲虫( )的线粒体氧化磷酸化(OXPHOS)对温度的响应。具体而言,我们依次使用复合物I底物、脯氨酸、琥珀酸和甘油-3-磷酸(G3P),在6、12、18、24、30、36、42和45°C下测量这些物种透化飞行肌肉中的氧气消耗。复合物I呼吸速率(CI-OXPHOS)在蜜蜂和果蝇中对温度非常敏感,在中等温度下氧气消耗较高,但在高温下急剧下降。脯氨酸氧化仅在马铃薯甲虫中引发呼吸的大幅增加,其模式与蜜蜂和果蝇的CI-OXPHOS相同。此外,琥珀酸和G3P氧化在蜜蜂和果蝇的高温下均能使呼吸显著增加(在马铃薯甲虫中程度较小)。然而,当达到45°C时,果蝇中这种由G3P诱导的呼吸速率急剧下降。这些结果表明,与果蝇相比,蜜蜂的线粒体功能对高温更具弹性。它们还表明,底物氧化的线粒体灵活性在高温下维持高氧气消耗水平方面具有重要但物种特异性的作用,并暗示了飞行昆虫线粒体对温度的先前未知的适应性机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6077/9081799/3cef5cf1cd67/fphys-13-897174-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验