Carvalho H W P, Leroux F, Briois V, Santilli C V, Pulcinelli S H
Universidade Estadual Paulista (UNESP), Instituto de Química Rua Prof. Francisco Degni 55 14800-060 Araraquara SP Brazil
Synchrotron SOLEIL L'Orme des Merisiers, Saint Aubin, BP48 91192 Gif-sur-Yvette Cedex France.
RSC Adv. 2018 Oct 9;8(60):34670-34681. doi: 10.1039/c8ra07611a. eCollection 2018 Oct 4.
In-depth understanding of the thermal stability of polymer-clay nanocomposites requires the use of advanced time-resolved techniques combined with multivariate data analysis, as well as the preparation of layered nanofillers with well-defined composition. The layered double hydroxide (LDH) compounds ZnAl(OH)·HO, ZnAlFe(OH)·HO, ZnCuAl(OH)·HO, and ZnCuAlFe(OH)·HO were prepared, each designed to specifically identify the physical barrier, radical trapping, and char formation contributions to the thermal stability of the PMMA-LDH nanocomposites. The unique combination of conventional methods (TG, DSC, and Raman spectroscopy) and synchrotron radiation techniques (XAS and WAXS), applied during PMMA-LDH heating, revealed the synergetic (of iron) and antagonist (of copper) effects of the LDH layers transformations on the three main endothermic steps of mass loss of the polymer. The diffusion barrier effect was proved by the downshift of the PMMA thermal decomposition temperature caused by the decrease of the LDH edifice thermostability when divalent cations were substituted in the LDH (passing from PMMA-ZnAl(OH)·HO to PMMA-ZnCuAl(OH)·HO). For PMMA-ZnAlFe(OH)·HO, a cooperative contribution of iron reduction, stabilisation of layered edifice, and radical trapping effects was observed for the thermal stability of the nanocomposite. LDH also acted as a diffusion barrier to the efflux and evaporation of depolymerized species, favouring the charring which exerts an additional contribution to thermal stability of the PMMA-LDH nanocomposites.
深入了解聚合物-粘土纳米复合材料的热稳定性需要使用先进的时间分辨技术并结合多变量数据分析,以及制备具有明确组成的层状纳米填料。制备了层状双氢氧化物(LDH)化合物ZnAl(OH)·HO、ZnAlFe(OH)·HO、ZnCuAl(OH)·HO和ZnCuAlFe(OH)·HO,每种化合物都旨在专门确定对PMMA-LDH纳米复合材料热稳定性的物理屏障、自由基捕获和炭形成贡献。在PMMA-LDH加热过程中应用的传统方法(TG、DSC和拉曼光谱)和同步辐射技术(XAS和WAXS)的独特组合,揭示了LDH层转变对聚合物质量损失的三个主要吸热步骤的协同(铁的)和拮抗(铜的)效应。当二价阳离子在LDH中被取代时(从PMMA-ZnAl(OH)·HO转变为PMMA-ZnCuAl(OH)·HO),由于LDH结构热稳定性的降低导致PMMA热分解温度下降,从而证明了扩散屏障效应。对于PMMA-ZnAlFe(OH)·HO,观察到铁还原、层状结构稳定和自由基捕获效应的协同作用对纳米复合材料的热稳定性有贡献。LDH还对解聚产物的流出和蒸发起到扩散屏障作用,有利于炭化,这对PMMA-LDH纳米复合材料的热稳定性有额外贡献。